
ANSI SQL Hierarchical Processing Can Fully Integrate Native XML
(as published in the ACM SIGMOD Record, March 2003)

Michael M David

Advanced Data Access Technologies, Inc.
mike@adatinc.com

Abstract

Most SQL-based XML vendor support is through
interoperation and not integration. One reason for this is
that XML is inherently hierarchical and SQL is
supposedly not. This paper demonstrates how ANSI
SQL along with its relational Cartesian product model
can naturally perform complete and flexible hierarchical
query processing. With this ANSI SQL inherent
hierarchical processing capability, native XML data can
be fully and seamlessly integrated into SQL processing
and operated on at a full hierarchical level. This paper
will describe the basic stages involved in this
hierarchical SQL processing: hierarchical data
modeling, hierarchical working set creation, and
hierarchical Cartesian product processing. These
processes enable a complete relational, XML, and
legacy data integration which maintains ANSI SQL
compatibility even while performing the most complex
multi-leg hierarchical processing, and includes the
dynamic, direct, and controlled hierarchical joining of
hierarchical structures. Also covered are ANSI SQL
hierarchical support features: hierarchical SQL views,
hierarchical data filtering, and hierarchical optimization.
These make standard SQL a well rounded and complete
hierarchical processor. With this full hierarchical level
of processing established, it will be shown how the
relational Cartesian product engine can be seamlessly
replaced with a hierarchical engine, greatly increasing
processing and memory utilization, and enabling
advanced XML hierarchical processing capabilities.

1 Introduction

SQL is in trouble today because XML is becoming
ubiquitous, used increasingly by the Internet, and no
SQL vendor has found a solution to seamlessly integrate
native XML processing into SQL. All SQL-based XML
integration approaches have had to resort to using non
standard, proprietary methods making them all far from
seamless and incompatible with each other. Basically,
these proprietary methods shred XML documents into
table rows and columns [5]. The processing is still
performed relationally and not hierarchically. The
hierarchical semantics in XML are not being utilized,
causing the hierarchical semantics to be discarded. This
unacceptable level of XML integration by SQL, one of

the most popular and important database interfaces to
the Internet, may signal the downfall of SQL with its
likely replacement being W3C’s XQuery. This would
require a huge effort in training and re-coding. XQuery
requires procedural-like coding adding significantly to
the learning and coding effort.

2 SQL-based XML integration wish list

As stated above, SQL-based XML vendor support today
is limited to processing XML documents by flattening
them into a relational table format. True native
integration has remained an unsolvable problem because
relational data is flat while XML is structured. If true
integration is possible, the following capabilities and
features would be very desirable.

2.1 ANSI standard, non proprietary integration
SQL users desire standard open integrated systems that
are implemented seamlessly and require little or no
additional training. They want standardized systems
which already operate in a known and trusted way, and
are not going to disappear overnight.

2.2 Ability to directly join XML structures
Being able to directly join hierarchical data structures
with full control over how they are hierarchically
combined is one of the most powerful and useful XML
integration capabilities. It is also a test for seamless
XML integration because of the implementation
difficulties. Joining hierarchical data structures require a
SQL syntax and semantics which specify exactly how to
join data structures hierarchically together. This process
should support dynamic queries and preserve the
semantics of all the involved data structures.

2.3 Hierarchical data processing
To utilize the hierarchical semantics contained in XML
documents, hierarchical data processing is necessary.
SQL processing needs to know the hierarchical structure
of the information being processed and how to utilize it.
This includes semantic interpretation of the SQL query
as it relates to the hierarchical data structure being
accessed. An example is selecting data from one leg of a
hierarchical structure based on data in another leg of the

Copyright  2003 by Advanced Data Access Technologies, Inc., Page 2-1

ANSI SQL Hierarchical Processing Can Fully Integrate Native XML

structure. This has a complex hierarchical semantics
involving both query and data structure semantics.

2.4 Process advanced hierarchical structures
The embedding of meta data along with the data found
in XML allows for advanced capabilities such as
variable data structures, network structures, and
duplicate named elements in the structure. SQL
hierarchical processing should also handle non
procedurally indicated mechanical operations such as
node collection and promotion.

2.5 What is not on the wish list
SQL is a non procedural data processing language and
should not be expected to handle all of the textual
capabilities made possible with XML. These involve
textual transformation and processing which requires a
more procedural type processing. This is what XQuery
was designed to handle. However, SQL should process
non procedural specified structural transformations.

3 Standard SQL hierarchical processing

Standard SQL today contains all of the necessary
capabilities to support full and complete hierarchical
processing. SQL’s hierarchical processing consists of
three stages: hierarchical data modeling, hierarchical
working set creation, and hierarchical Cartesian product
processing. After completing the hierarchical data
modeling stage, the hierarchical working set creation
and hierarchical Cartesian product processing stages are
automatically performed by the SQL engine. This
sequence produces full hierarchical processing while at
the same time observing valid relational processing.

3.1 Hierarchical data modeling
Hierarchical data modeling is specified naturally in SQL
by the ANSI SQL Left Outer Join operation which
inherently models hierarchical structures [2]. This Left
Outer Join process operates left to right joining the left
and right data argument values together. The resulting
structure becomes the left argument to the following
Left Outer Join operations which will each merge their
right data argument in turn. At each join point, the left
data argument is preserved even if there is no matching
data, while the right data argument is not preserved if
there is no data match. This behavior indicates that the
left argument is hierarchically above the right argument
because the left data argument can exist without a
related right argument while the reverse is not true.

When the data modeling process described above is
performed, the left data argument is combined into a
unified hierarchical structure as it progresses left to
right. The right data argument is hierarchically joined to

the left data argument conforming to the Outer Join
operation’s On clause join criteria. The On clause is
specified at each Outer Join point to specify how the
two data arguments are hierarchically related [2]. These
capabilities allow for any hierarchical structure to be
modeled. Figure 3.1 demonstrates a data structure being
modeled using the Left Outer Join syntax.

 Department View t

 Figure 3.1 H

CREATE VIE
 SELECT *
 LEF

 LEF

 LEF

 Figure 3.1 H

The data modeling
level, multi-leg hi
Left Outer Join op
data arguments an
points between t
defining the hierar
are created when
been linked to mu
Dept node. The S
used to include or
the structure multi
network structures
modeling XML ID

The On clause can
which starts at its
argument’s join no
hierarchical struct
is shown in Figure
of eighteen will b
hierarchical filterin
an employee will n
clause’s pathway d
correspond very cl

3.2 Hierarchical
The semantics of t
how the relational
row data values co
structure being m

Copyright  2003 by Advanced Data Access Technologie

Dep

Emp
Dpnd
ierarc

W De
 FROM

T OUT
ON

T OUT
ON

T OUT
ON

ierarc

 SQL i
erarchi
eration
d the

he no
chical p
the sam
ltiple t
QL ali
 model
ple tim
 as h
REFs a

 also sp
 assoc
de and
ure pos
 3.1, w
e exc
g is th
ot also
efinitio

osely to

workin
he Lef
 worki
rrespo
odeled

s, Inc.
Proj
hical data modeling

ptView AS
 Dept

ER JOIN Emp
 DeptId=EmpDeptId

ER JOIN Dpnd
 EmpId=DpndEmpId
 AND DpndAge<18
ER JOIN Proj
 DeptId=ProjDeptId

hical data modeling

n Figure 3.1 models the multi-
cal data structure shown. The
 controls the hierarchy of the
On clause specifies the link

des in the data arguments,
athways. Multiple legs (paths)
e upper level data node has

imes as shown above with the
as feature (not shown) can be
 the same node type (name) in
es. This is useful for defining
ierarchical structures [1] and
nd duplicate named elements.

ecify hierarchical filtering [1]
iated Left Outer Join’s right
 affects only this node from its
ition downward. An example
here dependents over the age

luded. The advantage of this
at removing all dependents for
 remove the employee. The On
n and its hierarchical filtering
 XML’s XPath operation.

g set creation
t Outer Join operation controls
ng set is generated so that the
nd to those in the hierarchical
. In the Outer Join view in

, Page 2-2

ANSI SQL Hierarchical Processing Can Fully Integrate Native XML

Figure 3.1, this equates to employees and projects with
no associated department being excluded, and the
preserving of employees with no dependents. This
hierarchical working set is shown in Figure 3.2.

DeptId EmpId DpndId ProjId
DeptX Emp1 Dpnd1 ProjX
DeptX Emp2 Dpnd2 ProjX
DeptX Emp1 Dpnd1 ProjY
DeptX Emp2 Dpnd2 ProjY
DeptY Emp3 NULL ProjZ
DeptY Emp3 NULL ProjW

 Figure 3.2 DeptView hierarchical working set

3.3 Hierarchical Cartesian product processing
The hierarchical working set shown in Figure 3.2
contains a restricted Cartesian product. It is restricted by
the On clauses shown in Figure 3.1 to its hierarchically
related combinations of data. This hierarchically related
Cartesian product sets the final stage for processing.
This final stage produces the hierarchical result set from
the hierarchical working set. It utilizes the information
gathered in the hierarchical working set for processing
and Where clause data filtering. Unlike the On clause,
the Where clause ranges over the entire record. This is
also standard for hierarchical query processing.

Where clause filtering criteria applied to hierarchical
structures can be quite powerful and complex. For
example, selecting data from one leg of a hierarchical
structure with filtering criteria based on another leg of
the structure has a definite hierarchical and useful
semantics. Based on the query shown in Figure 3.3 and
its associated structure shown in Figure 3.1, it could be
shown what dependents are in the same department as
“ProjX”. The involved legs are related by their common
ancestor node, Dept, and all dependents are selected
under the qualifying common ancestor data occurrence
of “DeptX” from the working set in Figure 3.2.

The above characteristics of the Cartesian product
model allow the relational engine to apply complex
Where clause filtering logic to the working set a single
row at a time. How is it possible that the complex
common ancestor hierarchical filtering logic can be
determined a row at a time? This is possible because all
of the necessary and valid hierarchical relationship
combinations that make up the hierarchically related
Cartesian product are represented in the working set
shown in Figure 3.2. All the sibling combinations of
related data automatically range under their qualified
hierarchical ancestors because the relationships are
hierarchical. This can be seen in Figure 3.3 which
demonstrates such a multi-leg query applied against the
hierarchical working set in Figure 3.2.

The query example in Figure 3.3 selects only rows with
a ProjId of “ProjX” and outputs EmpId and DpndId
values from a sibling leg under the common department
node occurrence of “DeptX”. A selection based on
“ProjY” would produce the same results accept for the
ProjId of “ProjY”. This is possible because the data has
been replicated hierarchically under the common
ancestor data occurrence of “DeptX” which also has a
project of “ProjY” as shown in Figure 3.2.

 SELECT * FROM DeptView
 WHERE ProjId=”ProjX”

DeptId EmpId DpndId ProjId
DeptX Emp1 Dpnd1 ProjX
DeptX Emp2 Dpnd2 ProjX

 Figure 3.3 Multi-leg Where selection processing

The SQL query example in Figure 3.3 is a simple
hierarchical query. A more complex SQL query could
involve a data structure with many legs and many
different common ancestor node types. The hierarchical
Cartesian product working set for this query would have
all the related hierarchical data combinations generated
under each common ancestor node. This would still be
handled equally well and automatically by the relational
engine’s standard Cartesian product processing. This
level of hierarchical processing by a relational processor
may come as a surprise, but hierarchical processing is
actually a subset of relational processing’s capabilities.

Relational processing can perform the most complex
queries based on the data relationships specified and the
relational Cartesian product engine will automatically
match the semantics implied by the relationships.
Depending on the type of relationships defined, the
implied semantics may not always be logical or
unambiguous but they will be performed as defined.
Even network relationships can be defined [1] and
processed. Hierarchically defined relationships are
logical and unambiguous, producing logical and non
ambiguous hierarchical results when processed by the
relational Cartesian product engine.

The common ancestor Where clause filtering semantics
and its processing logic becomes even more complex
when the filtering criteria contains an Or operation.
Normally with Or operations, if the first condition tests
true, there is no need to test the second one. This is not
true for processing hierarchical structures because
multiple levels of qualification could cause the second
condition to further qualify the result. This means that
both conditions of the Or operation should be tested to
insure the correct result. Figure 3.4 demonstrates this.

Copyright  2003 by Advanced Data Access Technologies, Inc., Page 2-3

ANSI SQL Hierarchical Processing Can Fully Integrate Native XML

 SELECT * FROM DeptView
 WHERE ProjId=”ProjX”

 OR Emp=”Emp3”

DeptId EmpId DpndId ProjId
DeptX Emp1 Dpnd1 ProjX
DeptX Emp2 Dpnd2 ProjX
DeptY Emp3 NULL ProjZ
DeptY Emp3 NULL ProjW

 Figure 3.4 Multi-leg Or logic

The query and result in Figure 3.4 shows that when the
“ProjX” data occurrence condition is true, all the other
leg occurrences under the qualified common ancestor
occurrence “DeptX” qualify (these are ”Emp1” and
“Emp2”). The reverse situation is true when the “Emp3”
data occurrence condition is true (“ProjZ” and “ProjW”
qualify). When both sides of the Or operation are true,
both sides will fully qualify. These are the correct
hierarchical semantics. They will be performed
automatically by the relational Cartesian product engine
processing the working set shown in Figure 3.2 a single
row at a time. The semantic correctness of these results
can be proven by applying each side of the Or operation
separately and unioning the results. The result will be
semantically the same, proving this Or processing is
valid. Most XML query processors can not handle this
level of hierarchical processing non procedurally.

4 SQL hierarchical support capabilities

The SQL hierarchical processing described thus far does
offer complete hierarchical processing, but SQL’s
inherent hierarchical processing does not stop here.
There are other very useful and powerful hierarchical
SQL support features that naturally compliment and
extend SQL’s inherent hierarchical processing. These
are hierarchical SQL views and hierarchical
optimization which are described below. They increase
ease of use and efficiency, raising SQL’s hierarchical
processing to a first class level.

4.1 Hierarchical SQL views
Left Outer Joins that model hierarchical structures or
portions of structures can be defined as standard SQL
views which can be specified as substructures in Outer
Join specifications that model hierarchical structures.
This is shown in Figure 4.1. There are no limitations on
these hierarchical views. They can be specified as the
left or right data argument to Outer Join operations
modeling hierarchical structures in the same manner as
described previously in Section 3.1. This enables the
full hierarchical joining of hierarchical data structures as
shown in Figure 5.1 These hierarchically structured

views can also be embedded to any depth. This natural
hierarchical subview capability increases data
abstraction and reuse significantly simplifying
hierarchical processing.

Most notably, when these standard SQL hierarchical
views naturally expand into a single homogenous SQL
statement for processing, it precisely and accurately
models the complete data structure. This automatically
handles the combining of the representative data
structures into a unified virtual hierarchical structure,
performed naturally by standard SQL processing. This
further supports and simplifies SQL’s ability to
naturally process hierarchical structures. Figure 4.1
shows a hierarchical Outer Join view expansion.

Whe
creat
Figu
surro
right
Oute
run
be p
adve
Whe
work
to t
susp
4.1 i
the
SQL

Wha
emb
cons
wou
man

Copyright  2003 by Advanced Data Acce

CREATE VIEW EmpView AS
 SELECT * FROM Emp LEFT OUTER
 JOIN Dpnd ON EmpId=DpndEmpId

Embedded View:

SELECT * FROM Dept LEFT OUTER
 JOIN EmpView ON DeptId=EmpDeptId

View Expansion:

SELECT * FROM Dept LEFT OUTER
 JOIN LEFT OUTER JOIN Dpnd
 ON EmpId=DpndEmpId
 ON DeptId=EmpDeptId

Figure 4.1 Hierarchical SQL view usage
n Outer Join views expand, they automatically
e right sided nesting which is demonstrated in
re 4.1. The expanded view, EmpView, pushes the
unding Outer Join’s matching On clause to the
 causing the current working set and its related
r Join operation to be temporarily suspended during

time processing. This causes the expanded view to
erformed using a new working set so that it does not
rsely affect the working set(s) placed in suspension.
n the expanded view operation completes, its
ing set naturally becomes the right data argument
he previous Outer Join operation placed in
ension. The expanded SQL syntax shown in Figure
s standard Outer Join syntax and correctly models
completed structure. Performed automatically, the
 programmer is not aware of this nested operation.

t this nested Outer Join syntax does is insure that
edded views do not corrupt the data structure being
tructed. For example, embedded Inner Join views
ld be destructive if they were not processed in this
ner. This nested view feature allows symmetric join

ss Technologies, Inc., Page 2-4

ANSI SQL Hierarchical Processing Can Fully Integrate Native XML

views used in modeling and constructing hierarchical
structures to define a single logical node. This is
possible because Inner Joins and Full Outer Joins being
symmetric in operation model a flat structure and can be
used to represent a single logical node in the
hierarchical structure [1].

4.2 Hierarchical optimization
To insure view consistency, conventional Inner Join
view materialization always accesses all data sources
specified in the view regardless of what data is required.
This is because any data source specified in the view
can affect the result because of the way the Inner Join
operation processes missing data. This has significant
overhead, and often results in multiple tailored
variations of views being defined for efficiency which
defeats their purpose of reuse and data abstraction.

Outer Join views that model hierarchical structures can
be optimized at query invocation to access only the data
necessary for the current query [1]. This is because
missing data is processed differently with Left Outer
Joins and follows the semantics of hierarchical
structures. Unlike Inner Joins, missing data outside the
range of the query will not affect the query, and does
not need to be accessed. Only required data and data on
the path to required data needs to be accessed. This
enables hierarchical views to be dynamically optimized
at view invocation based on what data is necessary for
the query being processed. This is shown in Figure 4.2
where the Dpnd and Proj nodes are temporarily
excluded. In this way fewer alternative view definitions
are necessary, which increases data abstraction and
reuse, further simplifying hierarchical processing and
greatly increasing efficiency.

Because the hierarchical optimization in Figure 4.2 has
dynamically removed dependents and projects from the
Outer Join view, they are not accessed. This also means
that the project replications that can be seen in the
working set in Figure 3.2 are not present to cause the
unnecessary replications of EmpId values that would
have been present with an Inner Join operation.

SQL vendors have yet to take advantage of hierarchical
optimization because they are either not aware of it or
they mistakenly believe it does not follow the ANSI
specification. The ANSI SQL specification defines the
Outer Join operation in terms of a simulation using
Inner Joins. This presents a problem when it is used as a
model to implement the Outer Join operation. This is
because it will unnecessarily access every data source in
an Outer Join view to take into account the affect of
missing data described earlier. True Outer Join
operations are not influenced by missing data and do not
need to test for missing data in a view.

 SELECT EmpId FROM DeptView

Dept

 Emp Proj

Dpnd

 Working Set Result

DeptId EmpId
DeptX Emp1
DeptX Emp2
DeptY Emp3

EmpId
Emp1
Emp2
Emp3

 Figure 4.2 Hierarchical view optimization

5 XML and legacy data support

As described in section 4.1, SQL views can be used to
define hierarchical structures which can be joined
naturally with other hierarchical views into a unified
hierarchical structure. To support the heterogeneous
processing of hierarchical data such as XML, these SQL
structured views can represent logical or physical
hierarchical data sources. The work on XML-Related
Specifications (SQL/XML) [3] consisting of SQL/XML
mappings and XML Select list functions can be utilized
in these views also. These SQL structured views will
enable seamlessly access to the hierarchical data source,
returning row set data that exactly matches the Outer
Join specification modeling it in the view. This makes
the support of XML and other legacy data sources
completely seamless as shown in Figure 5.1.

Hierarchical structured views can be used at three
levels. These levels are physical, logical, and external.
Physical hierarchical views define physical hierarchical
data structures such as XML and legacy data using the
Left Outer Join. They can be defined automatically from
their data definitions. Logical hierarchical views are
made up of physical views, logical views, and Left
Outer Joins allowing for maximum flexibility and data
abstraction. The external view is the topmost SQL
specification used to invoke the query. It can be
comprised of logical views, physical views, and Left
Outer Joins. This external specification can be specified
dynamically for ad hoc processing which can include
the hierarchical joining of data structures. All three of
these view levels are demonstrated in Figure 5.1. They
all use the standard Outer Join data modeling SQL, so
they automatically expand seamlessly into a single
seamless SQL specification that exactly models the
combined hierarchical structure. This greatly simplifies
heterogeneous access and assures seamless operation.

Copyright  2003 by Advanced Data Access Technologies, Inc., Page 2-5

ANSI SQL Hierarchical Processing Can Fully Integrate Native XML

 XMLView RDBView
 Input
 Structures:

 SELECT X1, L2
 OUTER JOIN
 AND RSta

 Result Structur

 Figure 5.1 ANS

6. Full native hie

At this point it has
and hierarchical le
and seamlessly p
processing level di
capability establishe
seamlessly extend
hierarchical data str
it can utilize the
structure to impro
Some examples
improved structured
XPath expressions.
structure meta data
developed by Adva

There is a significa
queries are limited t
hierarchical proces
ANSI standard SQL
Cartesian product m
seamlessly with a t
greatly increase the
avoiding Cartesian
[4], and extend the
These capabilities
ordering, avoiding
joins performed h
accuracy and effic
row set or fully stru

With a hierarchica
irregular structures
be supported. Th
variable structures,
XML capabilities m
additions, but this
based on ANSI SQ

capability. This makes these additions more seamless,
efficient, and easily accepted.

X

, D3 FROM XM
 RDBView ON X
t=”F” WHERE

e:

I SQL-based XM

rarchical suppo

 been shown how
gacy data source
rocessed at a
rectly in standar
d, SQL’s relation

ed by making
ucture being proc
hierarchical sema
ve SQL’s hierar

are hierarchic
 input and outpu

 The process nee
 from data model
nced Data Access

nt innovation that
o hierarchical stru
sing is operating
 syntax and sema
odel and engine

rue hierarchical e
 memory and pro
product explosio

 hierarchical proc
include unlimite

flattening hierarch
ierarchically, an

iency when prod
ctured XML docu

l engine poweri
and semistructure
ese include rec
and node collectio
ay require non sta
is tempered bec

L’s inherent hiera

Copyright  200
R

7 Conclusion

M
 L
LView LEFT
Key=RKey
DVal=123

 Row Set

This paper has identified SQL’s inherent and greatly
under utilized hierarchical processing capabilities and
shown how they combine synergistically to perform
unsurpassed hierarchical query processing. This enables
SQL to naturally and seamlessly integrate native XML
and legacy data without the use of proprietary language
X
 XML
constructs. This is shown with the standard SQL query
in Figure 5.1 which seamlessly performs the following
L
 D
D

L in

rt

 rel
s ca

ful
d SQ
al en
it a
esse
ntic

chic
al
t, an
ded
ing
Tec

 can
ctur

 sea
ntics
cou
ngin
cess
ns a
essin
d m
ical
d i
ucin
men

ng
d c
ursi
n. T
nda
ause
rchi

3 by
B

tegration

ational, XML,
n be accessed
l hierarchical

L. With this
gine could be
ware of the
d. In this way
s in the data
al processing.
optimizations,
d support for
to extract the

SQL has been
hnologies, Inc.

 be used when
es. Since SQL
mlessly under
, the relational
ld be replaced
e. This would
ing efficiency
nd processing
g capabilities.
ulti-leg data

 data on input,
ncreasing the
g a relational
t on output.

SQL, XML’s
apabilities can
ve structures,
hese advanced
rd SQL syntax
 they operate
cal processing

hierarchical capabilities described in this paper and
remains consistent with ANSI SQL’s specifications:

• Physical and logical data structure modeling
• Hierarchical multi-leg data structure processing
• Hierarchical Where clause filtering
• Hierarchical structure view support
• Native XML hierarchical integration
• Dynamic hierarchical joining of data structures
• Hierarchical access optimization
• Hierarchical node promotion
• Hierarchical data filtering (RStat=”F”)
• Hierarchical engine can process this query
• Result has hierarchical semantics preserved

With SQL’s inherent hierarchical processing capability
fully utilized, SQL’s future will continue to look bright.
And the Internet will have a standard well known SQL
interface that interfaces at a hierarchical level that can
take full advantage of XML.

References

[1] M. David. Advanced ANSI SQL Data Modeling and
Structure Processing. Artech House Publishers, 1999.

[2] M. David. Advanced Capabilities of the Outer Join.
ACM SIGMOD Record, Vol. 21, No.1, March 1992.

[3] A. Eisenberg, J Melton. SQL/XML is Making Good
Progress. SIGMOD Record, Vol. 31, No. 2, June 2002.

[4] M. Fernandez, A. Morishima, D. Suciu. Efficient
Evaluation of XML Middle-ware Queries. Proceedings
of the 2001 ACM SIGMOD International Conference
on Management of Data, May 2001.

[5] J. Shanmugasundaram et al. A General Technique
for Querying XML Documents using a Relational
Database System. SIGMOD Record, Vol. 30, No.3,
Sept. 2001

 Advanced Data Access Technologies, Inc., Page 2-6

	1 Introduction
	2 SQL-based XML integration wish list
	
	
	3 Standard SQL hierarchical processing

	Figure 3.1 Hierarchical data modeling
	Figure 3.1 Hierarchical data modeling
	SELECT * FROM DeptView
	WHERE ProjId=”ProjX”
	Figure 3.3 Multi-leg Where selection processing
	WHERE ProjId=”ProjX”
	OR Emp=”Emp3”
	Figure 3.4 Multi-leg Or logic
	4 SQL hierarchical support capabilities

	Working Set Result
	Figure 4.2 Hierarchical view optimization
	
	5 XML and legacy data support
	XMLView RDBView
	Input
	Structures:
	SELECT X1, L2, D3 FROM XMLView LEFT
	OUTER JOIN RDBView ON XKey=RKey
	Result Structure: Row Set
	Figure 5.1 ANSI SQL-based XML integration

	7 Conclusion
	References

