
ANSI SQL Transparent Dynamic ANSI SQL Transparent Dynamic
Multipath Hierarchical Structured Multipath Hierarchical Structured

Data Processing For Data Processing For
Relational, XML, & Legacy DataRelational, XML, & Legacy Data

Michael M David and Lee FespermanMichael M David and Lee Fesperman
Advanced Data Access Technologies, Inc.Advanced Data Access Technologies, Inc.

www.adatinc.comwww.adatinc.com

The example results shown in this presentation can be reproducedThe example results shown in this presentation can be reproduced
on our online interactive prototype at on our online interactive prototype at www.adatinc.com/demo.htmlwww.adatinc.com/demo.html

22

Previous Database History
Hierarchical processing popular 40 years agoHierarchical processing popular 40 years ago

Used user navigational processingUsed user navigational processing
Multipath hierarchical query processing usedMultipath hierarchical query processing used

Used nonprocedural navigationless processingUsed nonprocedural navigationless processing
Made possible by automatic semantic processingMade possible by automatic semantic processing

Relational processing replaces hierarchicalRelational processing replaces hierarchical
Also uses nonprocedural navigationless processing Also uses nonprocedural navigationless processing
But more flexibility with data independence from joinBut more flexibility with data independence from join

Hierarchical processing technology forgottenHierarchical processing technology forgotten
No Internet to store hierarchical processing knowledgeNo Internet to store hierarchical processing knowledge

Hierarchical structures popular again with XMLHierarchical structures popular again with XML
User procedural navigation is back againUser procedural navigation is back again
Where is navigationless access for structured access?Where is navigationless access for structured access?

33

SQL/XML Industry ProblemsSQL/XML Industry Problems
Only proprietary vendor solutionsOnly proprietary vendor solutions

All vendor solutions incompatible with each otherAll vendor solutions incompatible with each other
Integration solutions are XML centric and proceduralIntegration solutions are XML centric and procedural

No satisfactory XML integration solutionNo satisfactory XML integration solution
Hierarchical data value lossHierarchical data value loss
XML not fully integrated into SQLXML not fully integrated into SQL
XML structured data processed as semistructured XML structured data processed as semistructured

No hierarchical processing standardNo hierarchical processing standard
Invalid hierarchical processing result is possible Invalid hierarchical processing result is possible
Invalid hierarchical structure result is possibleInvalid hierarchical structure result is possible

Markup and structured data processed the sameMarkup and structured data processed the same
Structured data needs to be processed differently!Structured data needs to be processed differently!

44

SQL/XML Structured Data SQL/XML Structured Data
Processing ProblemsProcessing Problems

Limited to linear single path processingLimited to linear single path processing
Query data selection limitationsQuery data selection limitations
Relational join single path mindsetRelational join single path mindset

Requires user database navigationRequires user database navigation
Loss of dynamic hierarchical processingLoss of dynamic hierarchical processing
Limits complex hierarchical processingLimits complex hierarchical processing
Prevents seamless & transparent processingPrevents seamless & transparent processing

Requires specific vendor user trainingRequires specific vendor user training
Requires XML and vendor trained usersRequires XML and vendor trained users

55

A Working ANSI SQL XML SolutionA Working ANSI SQL XML Solution
Limits processing to only structured dataLimits processing to only structured data

Allows unambiguous nonprocedural queryingAllows unambiguous nonprocedural querying
Enables navigationless schemaEnables navigationless schema--free operationfree operation

Only performs hierarchical operationsOnly performs hierarchical operations
Only uses hierarchical Left Outer Join operationOnly uses hierarchical Left Outer Join operation
Naturally supports full hierarchical structuresNaturally supports full hierarchical structures
Allows hierarchical structureAllows hierarchical structure--aware operation aware operation

Supports inherent hierarchical processingSupports inherent hierarchical processing
This solves relational/XML data integrationThis solves relational/XML data integration
This also solves SQL to XML system mappingThis also solves SQL to XML system mapping
Transparent multipath hierarchical processingTransparent multipath hierarchical processing

66

Structured Data Automatic Structured Data Automatic
Processing BenefitsProcessing Benefits

SQL transparent XML integrationSQL transparent XML integration
ANSI SQLANSI SQL--92 syntax and semantics, not XML centric92 syntax and semantics, not XML centric
Nonprocedural and navigationless, InteractiveNonprocedural and navigationless, Interactive
No knowledge of structure necessary, schemaNo knowledge of structure necessary, schema--freefree

Multipath nonlinear hierarchical processingMultipath nonlinear hierarchical processing
Hierarchically accurate results automaticallyHierarchically accurate results automatically
Dynamic hierarchical processing optimizationDynamic hierarchical processing optimization
Dynamic output uses hierarchical result structureDynamic output uses hierarchical result structure

SQL hierarchical views fully functionalSQL hierarchical views fully functional
Global views with no overhead and maximum reuseGlobal views with no overhead and maximum reuse
Global hierarchical queries now possibleGlobal hierarchical queries now possible
Hierarchical data filtering & XML keyword searchHierarchical data filtering & XML keyword search

77

Current XML Hierarchical Data
XML Was Created as a Markup LanguageXML Was Created as a Markup Language
Unstructured Mapped to SemistructuredUnstructured Mapped to Semistructured
Structured Vs. Semistructured Data Structured Vs. Semistructured Data
Same as Fixed Vs. Fuzzy MeaningSame as Fixed Vs. Fuzzy Meaning
Why Semistructured Requires NavigationWhy Semistructured Requires Navigation

A
B C
B D

A
B C
D E

Structured Semistructured
Data Data

Unambiguous Ambiguous
Query Structure Query Structure

The multiple B
nodes in this
structure make
it ambiguous
for querying
without user
navigation.

88

Why Hierarchical Data Why Hierarchical Data
structures are Powerfulstructures are Powerful

Automatic Data and Path ReuseAutomatic Data and Path Reuse
Extending Path Increases Data ValueExtending Path Increases Data Value
Adding Paths Increase Data Value Further Adding Paths Increase Data Value Further
Hierarchical XML Becoming UbiquitousHierarchical XML Becoming Ubiquitous
Data Structures are UnambiguousData Structures are Unambiguous

A
B C
D E

1) A/B
2) A/C
3) A/C/D
4) A/C/E

Data/Path Creating more
value than is
collected,
automatic
nonlinear data
value increase.

99

Why Hierarchical Structured Why Hierarchical Structured
Data Processing is Powerful Data Processing is Powerful

Dynamic Multipath Query CombinationsDynamic Multipath Query Combinations
Multipath Data Value Grows ContinuallyMultipath Data Value Grows Continually
Every Node is Related to Every Other NodeEvery Node is Related to Every Other Node
No. of Possible Queries Becomes UnlimitedNo. of Possible Queries Becomes Unlimited
Automatic Processing = Unlimited ComplexityAutomatic Processing = Unlimited Complexity

A
B C
D E

1) SELECT B,C FROM Mview
2) SELECT B,D FROM Mview WHERE A=2
3) SELECT A,B FROM Mview WHERE E=5
4) SELECT B,C FROM Mview WHERE D=1 AND E=5
5) SELECT D,E FROM Mview WHERE B=3 OR C=4

Increasingly Complex
Multipath Queries

Naturally utilizes the inherent
hierarchical semantics in
multipath queries.Mview

1010

Hierarchical Data Structure TypesHierarchical Data Structure Types
XML is self defining contiguous and nestedXML is self defining contiguous and nested

No foreign key relation needed to make structureNo foreign key relation needed to make structure
IBMIBM’’s IMS database is discontinuouss IMS database is discontinuous

Internally linkedInternally linked
Structured VSAM is contiguous Structured VSAM is contiguous

With hierarchical level & data occurrence countsWith hierarchical level & data occurrence counts
Flat tabular objects hierarchically modeledFlat tabular objects hierarchically modeled

Relational tables, flat files, spread sheetsRelational tables, flat files, spread sheets

All support same hierarchical operation and principlesAll support same hierarchical operation and principles

1111

Hierarchical Structured Data MakeupHierarchical Structured Data Makeup
Multiple Node TypesMultiple Node Types
Nodes Support Multiple Data OccurrencesNodes Support Multiple Data Occurrences
Naturally Built With 1 to M RelationshipsNaturally Built With 1 to M Relationships
Hierarchical Data Preservation OperationHierarchical Data Preservation Operation--
Naturally Support Variable Length PathsNaturally Support Variable Length Paths

Emp

Dpnd Proj

Co
1

M

1

M

1

M

C01
Co2

Emp1
Emp2

Dpnd1 Proj2

Emp3

Proj3
Proj4

Not to be confused with
function driven single node
external hierarchical data
structure processing.

Suitable for IMS, Structured
VSAM, XML, COBOL FD and
hierarchically modeled
Relational and flat data.

1212

SQL Hierarchical Structured Data
Can Be Stored in Relational Rowsets
Multiple Node Types in Relational RowsetMultiple Node Types in Relational Rowset
Node Multiple Data Occurrences in RowsetNode Multiple Data Occurrences in Rowset
Multiple Pathways in Rowset Multiple Pathways in Rowset
Variable Length Pathways in RowsetVariable Length Pathways in Rowset

CoCo EmpEmp DpndDpnd ProjProj
Co1Co1 Emp1Emp1 Dpnd1Dpnd1
Co1Co1 Emp2Emp2 Proj2Proj2
Co2Co2 Emp3Emp3 Proj3Proj3
Co2Co2 Emp3Emp3 Proj4Proj4

C01
Co2

Emp1
Emp2

Dpnd1 Proj2

Emp3

Proj3
Proj4

Relational Rowset
Hierarchical
structure
preserved
in rowset,
in and back
out again.

1313

Mapping Relational SQL to Mapping Relational SQL to
Hierarchical XMLHierarchical XML

A
B C
D E

B
D E

AA BB CC DD EE

A1A1 B1B1 C1C1 D2D2 D2D2

A1A1 B1B1 C1C1 D1D1 E1E1
A1A1 B1B1 C1C1 D2D2 E1E1
A1A1 B1B1 C1C1 D1D1 E2E2

A1A1 B2B2 C1C1 D1D1 E1E1

AA DD EE

A1A1 D2D2 D2D2

A1A1 D1D1 E1E1
A1A1 D2D2 E1E1
A1A1 D1D1 E2E2

SELECT A.a, D.d, E.e
FROM GlobalView
WHERE B.b=“B1”

A
D E

Shown on this slide:Shown on this slide:
1. Conceptual Level
2. Multipath Processing
3. Hierarchical Filtering
4. Dynamic Data Select
5. Access Optimization
6. Global View Support
7. Schema-free Query
8. Node Promotion
9. Auto Output Format

X

Working Set Result Set

Input View Conceptual Hierarchical Result
Query

XML
Output
XML

Output

1414

Relational Logical Hierarchical ViewRelational Logical Hierarchical View
CREATE VIEW CREATE VIEW EmpViewEmpView AS AS
SELECT * FROM SELECT * FROM EmpEmp
LEFT JOIN LEFT JOIN DpndDpnd
ON ON EmpIDEmpID==DpndEmpIDDpndEmpID

AND AND DpndCodeDpndCode==’’DD’’
LEFT JOIN LEFT JOIN EaddrEaddr ON ON EmpCustIDEmpCustID==EaddrCustIDEaddrCustID;;

Emp

Dpnd Eaddr

<root><root>
<<empemp empidempid="Emp01">="Emp01">
<<dpnddpnd dpndiddpndid="Dpnd01"/>="Dpnd01"/>
<<eaddreaddr eaddrideaddrid="Addr01"/>="Addr01"/>
</</empemp>>
<<empemp empidempid="Emp02">="Emp02">
<<eaddreaddr eaddrideaddrid="Addr03"/>="Addr03"/>
</</empemp>>

</root></root>

SELECT SELECT EmpIDEmpID, , DpndIDDpndID, ,
EaddrIDEaddrID

FROM FROM EmpViewEmpView

Hierarchical SQL
data modeling and
processing
semantics defined.

Logical hierarchical SQL
view and semantics
processed directly by
relational engine making it
operate fully hierarchically.

1515

XML Physical Hierarchical ViewXML Physical Hierarchical View
CREATE XML CREATE XML CustViewCustView
CustCust((
CustIDCustID Char(8),Char(8),
CustStoreIDCustStoreID Char(8)),Char(8)),

Invoice(Invoice(
InvIDInvID Char(8),Char(8),
InvCustIDInvCustID Char(8),Char(8),
InvStatusInvStatus Char(8)) Parent Char(8)) Parent CustCust,,

AddrAddr((
AddrIDAddrID Char(8),Char(8),
AddrCustIDAddrCustID Char(8),Char(8),
AddrStateAddrState Char(8)) Parent Char(8)) Parent CustCust

<root><root>
<<custcust custidcustid="Cust01">="Cust01">
<invoice <invoice invidinvid="Inv01"/>="Inv01"/>
<invoice <invoice invidinvid="Inv02"/>="Inv02"/>
<<addraddr addridaddrid="Addr01"/>="Addr01"/>

CREATE VIEW CREATE VIEW CustViewCustView ASAS
SELECT * FROM SELECT * FROM CustCust
LEFT JOIN InvoiceLEFT JOIN Invoice
ON ON CustIDCustID==InvIDInvID
LEFT JOIN ADDR LEFT JOIN ADDR
ON ON CustIDCustID==AddrIDAddrID;;

Cust

Invoice Addr

Converted to
SQL CustView

CREATE VIEW CREATE VIEW CustViewCustView ASAS
SELECT * FROM SELECT * FROM CustCust
LEFT JOIN InvoiceLEFT JOIN Invoice
ON ON CustIDCustID==InvIDInvID
LEFT JOIN ADDR LEFT JOIN ADDR
ON ON CustIDCustID==AddrIDAddrID;;

SELECT SELECT CustCust, Invoice, , Invoice, AddrAddr
FROM FROM CustViewCustView

This SQL created outer join view syntax is
used as a hierarchical map of the physical
IMS CustView for seamless operation.

1616

Joining Heterogeneous ViewsJoining Heterogeneous Views
SELECT SELECT EmpIDEmpID, , DpndIDDpndID, , EaddrIDEaddrID, ,

CustIDCustID InvIDInvID, , AddrIDAddrID
FROMFROM EmpViewEmpView
LEFT JOIN LEFT JOIN CustViewCustView
ON ON EmpCustIDEmpCustID==CustIDCustID

<root>
<emp empid="Emp01">
<dpnd dpndid="Dpnd01"/>
<eaddr eaddrid="Addr01"/>
<cust custid="Cust01">
<invoice invid="Inv01"/>
<invoice invid="Inv02"/>
<addr addrid="Addr01"/>
</cust>
</emp>
<emp empid="Emp02">
<eaddr eaddrid="Addr03"/>
<cust custid="Cust03">
<addr addrid="Addr03"/>
</cust>
</emp>
</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

Cust

Invoice Addr

Emp

Dpnd Eaddr

Heterogeneous
Logical View

of Result

Hierarchical
Structure Join

Emp logical and Cust physical views are
both hierarchically modeled in the same
way in SQL making for a seamless,
unified and logical hierarchical join.

1717

Logical Hierarchical Structures Offer Logical Hierarchical Structures Offer
Flexible Relational/XML IntegrationFlexible Relational/XML Integration

Data Model:Data Model:
Natural Natural
CommonCommon

Features:Features:
AbstractionAbstraction
ConsistencyConsistency
SeamlessSeamless

Capabilities:Capabilities:
Data IntegrationData Integration
Solves Solves RelRel and and HierHier ProblemsProblems
Separates Structure from DataSeparates Structure from Data
Hierarchical Structure FlexibilityHierarchical Structure Flexibility
Offers Flexibility to Fixed StructuresOffers Flexibility to Fixed Structures

Logical
Tables

Physical
XML

Common Outer Join
Data Modeling

Mapping

Modeling

Data Type

Cust

Invoice Addr

Emp

Dpnd Eaddr

Logical
hierarchical
structures
solve
hierarchical
fixed structure
problems.

Heterogeneous
Logical
Structure

Log. and Phy.
Structures have
same hierarchy
op principles

1818

Heterogeneous Data Structure Heterogeneous Data Structure
Mashup Uses Linking Below RootMashup Uses Linking Below Root

<root>
<emp empid="Emp01">
<dpnd dpndid="Dpnd01"/>
<eaddr eaddrid="Addr01">
<cust custid="Cust01">
<invoice invid="Inv01"/>
<invoice invid="Inv02"/>
<addr addrid="Addr01"/>
</cust>
</eaddr>
</emp> ...</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

Addr

Emp

Dpnd

Invoice

Result StructureLink Below Root

SELECT SELECT EmpIDEmpID, , DpndIDDpndID, , InvIDInvID, ,
AddrIDAddrID, , EaddrIDEaddrID, , CustIDCustID

FROM FROM EmpViewEmpView LEFT JOIN LEFT JOIN
CustViewCustView ON ON EaddrIDEaddrID==AddrIDAddrID

WHERE WHERE CustIDCustID <> <> ””Cust02Cust02””

Cust

Eaddr

Mashups allow linking anywhere
into the lower level structure. We
determined this was valid and what
the new semantic structure is.Dashed arrow is linkage.

Solid arrow is new structure.

1919

Association Table UseAssociation Table Use
SELECT SELECT EmpIDEmpID, , DpndIDDpndID, , EaddrIDEaddrID, , CustIDCustID, , InvoiceIDInvoiceID

AddrIDAddrID, , IntersectDataIntersectData
FROM FROM EmpViewEmpView
LEFT JOIN LEFT JOIN AssociationTableAssociationTable On On DpndIDDpndID==DpndXDpndX
LEFT JOIN LEFT JOIN CustViewCustView ON ON CustIDCustID==CustXCustX

Dpnd

EmpView

Cust

AddrInvoice

Emp

Eaddr

Result
Structure

DpndX CustX IntersectData

Association
Table

CustView

Dpnd

Cust

AddrInvoice

Emp

Eaddr

IntersectData

Association Table
Capabilities added:
• External Relationships
• M to M Relationships
• Intersecting Data
• Can be Transparent
• Retains Hier Structure

2020

Hierarchical Data Filtering, Auto Hierarchical Data Filtering, Auto
Output & StructureOutput & Structure--free Processingfree Processing

A
B C
D E

B
D E

SELECT A.a, D.d, E.e
FROM GlobalView
WHERE B.b=“B1”

A
D E

X

Input View Conceptual Hierarchical Result
Query

Automatic
Structured XML

Output Formatting

Hierarchical WHERE clause global data filteringHierarchical WHERE clause global data filtering
Cousin nodes like node C above are filtered from B nodeCousin nodes like node C above are filtered from B node
This makes this a more internally complex multipath queryThis makes this a more internally complex multipath query

StructureStructure--free processingfree processing
Navigationless XML access, no need to know structureNavigationless XML access, no need to know structure

Automatic structureAutomatic structure--aware output formattingaware output formatting
Result structure known from outer join syntax modelingResult structure known from outer join syntax modeling

2121

Optimization, Global Views Optimization, Global Views
and Node Promotion and Node Promotion

A
B C
D E

B
D E

SELECT A.a, D.d, E.e
FROM GlobalView
WHERE B.b=“B1”

A
D E

X

Input View Conceptual Hierarchical Result
Query This is a conceptual

query where the input
structure is not known
and the output adapts
to the dynamic result.

Hierarchical optimization can remove from access Hierarchical optimization can remove from access --
Unreferenced data nodes not on path to referenced dataUnreferenced data nodes not on path to referenced data
Dynamically controlled by SQLDynamically controlled by SQL’’s variable SELECT lists variable SELECT list

Optimization makes all views global viewsOptimization makes all views global views
Because they have no overhead for unreferenced fieldsBecause they have no overhead for unreferenced fields

Node promotion closes around unselected nodesNode promotion closes around unselected nodes
This happens in relational processing tooThis happens in relational processing too

2222

Global Query Uses Global ViewsGlobal Query Uses Global Views

SELECT SELECT **
FROM FROM EmpCustEmpCust
WHERE WHERE InvStatusInvStatus==‘‘OO’’

<root>
<emp empid="Emp01" empstoreid="Store01" empcustid="Cust01"

empstatus="F">
<dpnd dpndid="Dpnd01" dpndempid="Emp01" dpndcode="D"/>
<eaddr eaddrid="Addr01" eaddrcustid="Cust01" eaddrstate="CA"/>
<cust custid="Cust01" custstoreid="Store01">
<invoice invid="Inv02" invcustid="Cust01" invstatus="O"/>
<addr addrid="Addr01" addrcustid="Cust01" addrstate="CA"/>

</cust>
</emp>
</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

EmpCust Global views allow entire
structures to be defined
and queried with no
overhead, more user
friendly. Global query
allows hierarchical
filtering of entire view.

Global Query

Global Data Filter

2323

Node Promotion and Nested ViewNode Promotion and Nested View
CREATE VIEW CREATE VIEW EmpCustEmpCust AS AS
SELECT * SELECT *
FROM FROM EmpViewEmpView LEFT JOIN LEFT JOIN CustViewCustView

ON ON EmpCustIDEmpCustID==CustIDCustID

<root>
<emp empid="Emp01">
<dpnd dpndid="Dpnd01"/>
<invoice invid="Inv01"/>
<invoice invid="Inv02"/>
<addr addrid="Addr01"/>

</emp>
<emp empid="Emp02">
<addr addrid="Addr03"/>

</emp>
</root>Cust

Invoice Addr

Emp

Dpnd Eaddr

Addr

Emp

Dpnd Invoice

Node
Promotion

EmpCust

SELECT SELECT EmpIDEmpID, , DpndIDDpndID, ,
InvIDInvID, , AddrIDAddrID

FROM FROM EmpCustEmpCust

Not SELECTed

Hierarchical views can be nested.
Views can contain views.

2424

Node Promotion Override and XML Node Promotion Override and XML
Format ChangeFormat Change <emp>

<empid>Emp01</empid>
<dpnd>
<dpndid>Dpnd01</dpndid>
</dpnd>
<cust>
<invoice>
<invid>Inv01</invid>
</invoice>
<invoice>
<invid>Inv02</invid>
</invoice>
<addr>
<addrid>Addr01</addrid>
</addr>
</cust>
</emp>
<emp>
<empid>Emp02</empid>

Cust

Invoice Addr

Emp

Dpnd Eaddr

Addr

Emp

Dpnd

Invoice

No Node
Promotion

EmpCust

SELECT SELECT EmpIDEmpID, , DpndIDDpndID, ,
InvIDInvID, , AddrIDAddrID

FROM FROM EmpCustEmpCust
FOR XML ELEMENT KEEP NODEFOR XML ELEMENT KEEP NODE

Cust

Without node promotion, unselected
nodes are output empty. XML output
format was changed to Element style.

2525

Data Structure Mashup With Node Data Structure Mashup With Node
Promotion = Data VirtualizationPromotion = Data Virtualization

<root>
<emp empid="Emp01">
<dpnd dpndid="Dpnd01"/>
<invoice invid="Inv01"/>
<invoice invid="Inv02"/>
<addr addrid="Addr01"/>

</emp>
<emp empid="Emp02">
<addr addrid="Addr03"/>

</emp>
</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

Addr

Emp

Dpnd Invoice

Result Output with
Node Promotion

Link Below Root

SELECT SELECT EmpIDEmpID, , DpndIDDpndID, ,
InvIDInvID, , AddrIDAddrID

FROM FROM EmpViewEmpView
LEFT JOIN LEFT JOIN CustViewCustView

ON ON EaddrIDEaddrID==AddrIDAddrID

Mashups with node promotion gives
aggregated result of the data. This has
same effect as data virtualization.Dashed boxes are unselected, not output.

2626

Multipath Query Processing and Multipath Query Processing and
its Required LCA Processingits Required LCA Processing

Multipath query references multiple pathwaysMultipath query references multiple pathways--
and uses a WHERE data filtering operationand uses a WHERE data filtering operation
For example: Selecting data based on data in another pathFor example: Selecting data based on data in another path
This requires a special processing using LCAThis requires a special processing using LCA

Lowest Common Ancestor (LCA) NodeLowest Common Ancestor (LCA) Node
The LCA node is the lowest common ancestor node The LCA node is the lowest common ancestor node --
Located between two pathway node points in the structureLocated between two pathway node points in the structure
Used to keep the hierarchical query result meaningfulUsed to keep the hierarchical query result meaningful

Two types of SQL multipath LCA usage Two types of SQL multipath LCA usage
SELECT with WHERE clause referencing two different pathsSELECT with WHERE clause referencing two different paths
Compound WHERE clause referencing two different pathsCompound WHERE clause referencing two different paths

This LCA processing solves the XML Keyword Search problemThis LCA processing solves the XML Keyword Search problem
These two uses of LCA can be combined causing nestingThese two uses of LCA can be combined causing nesting
Each SELECT data item can have its own LCAEach SELECT data item can have its own LCA

2727

Multipath LCA Query Logic for Multipath LCA Query Logic for
Single SELECT DataSingle SELECT Data

SELECT SELECT DpndIDDpndID
FROM FROM EmpCustEmpCust
WHERE WHERE AddrIDAddrID==’’Addr01Addr01’’

<root>
<dpnd dpndid="Dpnd01"/>

</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

EmpCust

SELECT LCA

Lowest Common Ancestor (LCA)
processing for the SQL SELECT
clause will automatically process
multiple LCA nodes when multiple
specified output data is located
across different pathways.

SELECT data types Dpnd and
Invoice generate different LCAs.

2828

Multipath LCA Query Logic for Multipath LCA Query Logic for
Multiple SELECT DataMultiple SELECT Data

SELECT SELECT DpndIDDpndID, , InvIDInvID
FROM FROM EmpCustEmpCust
WHERE WHERE AddrIDAddrID==’’Addr01Addr01’’

<root>
<dpnd dpndid="Dpnd01"/>
<invoice invid=“Inv01"/>
<invoice invid=“Inv02"/>

</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

EmpCust

SELECT LCAs

Lowest Common Ancestor (LCA)
processing for the SQL SELECT
clause will automatically process
multiple LCA nodes when multiple
specified output data is located
across different pathways.

SELECT data types Dpnd and
Invoice generate different LCAs.

2929

Compound WHERECompound WHERE Clauses also Clauses also
Require Their Own LCARequire Their Own LCA

SELECT SELECT DpndIDDpndID
FROM FROM EmpCustEmpCust
WHERE WHERE InvIDInvID==’’Inv01Inv01’’
AND AND AddrIDAddrID==’’Addr01Addr01’’

<root>
<dpnd dpndid="Dpnd01"/>
<dpnd dpndid="Dpnd03"/>
</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

EmpCust

SELECT LCA

WHERE LCA

Lowest Common Ancestor (LCA) node
processing for multipath queries is
necessary. We found it working in SQL
naturally on both the SELECT and
WHERE operations. Academic projects
are currently researching how to add it to
XQuery. LCA is the lowest node
between node points on separate paths.

This LCA example is actually a
combined LCA and nested LCA example

3030

Data DrivenData Driven
Variable Structure GenerationVariable Structure Generation

<root>
<emp empid="Emp01"

empstatus="F">
<dpnd dpndid="Dpnd01"/>
<cust custid="Cust01">
<invoice invid="Inv01"/>
<invoice invid="Inv02"/>
<addr addrid="Addr01"/>
</cust>
</emp>
<emp empid="Emp02"

empstatus="">
</emp>
</root>

Cust

Invoice Addr

Emp

Dpnd Eaddr

Addr

Emp

Dpnd

Invoice

Variable StructureJoin Structure

SELECT SELECT EmpIDEmpID, , DpndIDDpndID, , InvIDInvID, ,
AddrIDAddrID, , EaddrIDEaddrID, ,
CustIDCustID, , EmpStatusEmpStatus

FROM FROM EmpViewEmpView
LEFT JOIN LEFT JOIN CustViewCustView

ON ON EmpCustIDEmpCustID==CustIDCustID
AND AND EmpStatusEmpStatus==““FF””

Cust Current EmpStatus data value
controls if this CustView data
occurrence expands or not.

3131

Variable Structure Generation Variable Structure Generation
Using Multiple ChoiceUsing Multiple Choice

<root>
<emp empid="Emp01"

empstatus="F">
<dpnd dpndid="Dpnd01"/>
Insert Full Time View Here
</emp>
<emp empid="Emp02"

empstatus=“P">
Insert Part Time View Here
</emp>
</root>

Variable StructureSELECT SELECT EmpIDEmpID, , DpndIDDpndID, , InvIDInvID, ,
AddrIDAddrID, , EaddrIDEaddrID, ,
CustIDCustID, , EmpStatusEmpStatus

FROM FROM EmpViewEmpView
LEFT JOIN LEFT JOIN CustViewFCustViewF

ON ON EmpCustIDEmpCustID==CustIDCustID
AND AND EmpStatusEmpStatus==““FF””

LEFT JOIN LEFT JOIN CustViewPCustViewP
ON ON EmpCustIDEmpCustID==CustIDCustID
AND AND EmpStatusEmpStatus==““PP””

Emp

Dpnd CustViewF CustViewP
Current EmpStatus data value
controls which view expands.
Control value is up or down path.

3232

Data Structure TransformationData Structure Transformation
Two Basic Types of Data Structure TransformationTwo Basic Types of Data Structure Transformation

Restructuring: uses data relationships in the dataRestructuring: uses data relationships in the data
Restructuring: Uses only the structure semantics in the dataRestructuring: Uses only the structure semantics in the data

RestructuringRestructuring
Used to bring out new data relationshipsUsed to bring out new data relationships
Also removes data and nodesAlso removes data and nodes
New structure is secondary, driven new relationships desiredNew structure is secondary, driven new relationships desired

Reshaping Reshaping
Used to reshape data structure to a desired new structureUsed to reshape data structure to a desired new structure
No data relationships dependencyNo data relationships dependency
AnyAny--toto--any data structure transformation is possibleany data structure transformation is possible
Reshaping is driven by structures natural semanticsReshaping is driven by structures natural semantics

SQL transformation operation assures accuracySQL transformation operation assures accuracy
Restructuring and Reshaping operations can be combinedRestructuring and Reshaping operations can be combined

3333

Restructure TransformationRestructure Transformation
SELECT SELECT X.EmpIDX.EmpID, , X.DpndIDX.DpndID, , Y.InvIDY.InvID, , X.AddrIDX.AddrID
FROM FROM EmpCustEmpCust Y Y
LEFT JOIN LEFT JOIN EmpCustEmpCust X ON X ON Y.InvCustIDY.InvCustID==X.EmpCustIDX.EmpCustID

<root>
<invoice invid="Inv01"/>
<emp empid="Emp01">
<dpnd dpndid="Dpnd01"/>
<addr addrid="Addr01"/>

</emp>
</Invoice></root>

X.Cust

Y.Invoice Addr

X.Emp

X.Dpnd Eaddr

EmpCust

Invoice

Emp

Dpnd Addr

Result Restructuring SQL transformation:
1) Takes structure apart
2) Disregards unwanted portions
3) Recombines it differently --
4) Uses different data relationships
5) This introduces new semantics

3434

Semantic AnySemantic Any--toto--Any Structure Any Structure
Reshaping TransformationReshaping Transformation

SELECT SELECT X.DpndIDX.DpndID, , Y.EmpIDY.EmpID, , Y.EaddrIDY.EaddrID
FROM FROM EmpViewEmpView X X
LEFT JOIN LEFT JOIN EmpViewEmpView Y Y
ON ON X.DpndIDX.DpndID==Y.DpndIDY.DpndID

<root>
<dpnd dpndid="Dpnd01">
<emp empid="Emp01">
<eaddr eaddrid="Addr01"/>

</emp>
</dpnd>

</root>Emp

Dpnd Eaddr

EmpView

Emp

Dpnd Eaddr

Dpnd

Emp

Eaddr

Result
Structure

X

Y

Reshaping uses only the semantics of the
data structure to transform it into the desired
structure. No new data relationships are
needed so this method can always be used.
Linking below the root is utilized.

3535

Polymorphic AnyPolymorphic Any--toto--Any ReshapingAny Reshaping
SELECT SELECT X.DpndIDX.DpndID, , Y.EaddrIDY.EaddrID, , Z.EmpIDZ.EmpID
FROM FROM EmpViewEmpView X X
LEFT JOIN LEFT JOIN EmpViewEmpView Y ON Y ON X.DpndIDX.DpndID==Y.DpndIDY.DpndID
LEFT JOIN LEFT JOIN EmpViewEmpView Z ON Z ON Y.EaddrIDY.EaddrID==Z.EaddrIDZ.EaddrID

<root>
<dpnd dpndid="Dpnd01">
<eaddr eaddrid="Addr01">
<emp empid="Emp01"/>

</eaddr>
</dpnd>

</root>

Emp

Dpnd Eaddr

EmpView

Emp

Dpnd Eaddr

Dpnd

Eaddr

Emp

Target
Structure

X

Y

Emp

Dpnd Eaddr

Z

This reshaping example moves only one node at a time
which makes its operation polymorphic allowing any
shaped input structure that uses the same data names.
Reshaping uses comparing the structure to itself for
positioning since data relationships are not relied on.

3636

Reshaping toReshaping to Multipath StructureMultipath Structure
SELECT SELECT X.DpndIDX.DpndID, , Y.EaddrIDY.EaddrID, , Z.EmpIDZ.EmpID
FROM FROM EmpViewEmpView X X
LEFT JOIN LEFT JOIN EmpViewEmpView Y ON Y ON X.DpndIDX.DpndID==Y.DpndIDY.DpndID
LEFT JOIN LEFT JOIN EmpViewEmpView Z ON Z ON X.DpndIDX.DpndID==Z.DpndIDZ.DpndID

<root>
<dpnd dpndid="Dpnd01">
<eaddr eaddrid="Addr01"/>
<emp empid="Emp01"/>

</dpnd>
</root>

Emp

Dpnd Eaddr

EmpView

Emp

Dpnd Eaddr

Dpnd

Eaddr Emp

Target
Structure

X

Y

Emp

Dpnd Eaddr

Z
This reshaping example demonstrates reconstructing
to a multipath nonlinear structure using SQL’s
hierarchical data modeling. The SQL hierarchical
semantic operation helps preserve correctness.

3737

Multipath Querying Vs. TransformMultipath Querying Vs. Transform

10
12 18

Multipath
ViewX Data

B
A
C

Transformed
ViewX Data

A
B C

Multipath
ViewX

16

16
10
18

SELECT A, C
FROM ViewX
WHERE B>10

12
10
18

Transformed
ViewX

SELECT A, C
FROM ViewX
WHERE B>10

10

18

10

18

10

18

A

C

Output
Structure Specifically

transforms
structure A/B to
B/A changing
semantics from
1-to-M to M-to-1

Multiple use
multipath
schema-free
query uses &
preserves
data structure

A simple
multipath
query can
usually avoid
transforms
and preserve
structure with
more accurate
results.

Data
Replication

3838

Renaming, Replicating, & SplittingRenaming, Replicating, & Splitting
NodesNodesSELECT SELECT EmpIDEmpID EmpNameEmpName, , DpndIDDpndID AS AS DpndNameDpndName, ,

Addr1.EaddrID AS Addr1.EaddrID AS AddrNameAddrName, ,
Addr2.Eaddrstate AS Addr2.Eaddrstate AS AddrStateAddrState

FROM FROM EmpEmp AS EmployeeAS Employee
LEFT JOIN LEFT JOIN DpndDpnd AS Dependent ON AS Dependent ON EmpIDEmpID==DpndEmpIDDpndEmpID and and DpndCodeDpndCode='D'='D'
LEFT JOIN LEFT JOIN EAddrEAddr AS Addr1 ON AS Addr1 ON EmpCustIDEmpCustID=Addr1.EAddrCustID=Addr1.EAddrCustID
LEFT JOIN LEFT JOIN EAddrEAddr AS Addr2 ON Addr1.EaddrCustID=Addr2.EAddrCustIDAS Addr2 ON Addr1.EaddrCustID=Addr2.EAddrCustID

<root>
<employee empname="Emp01">
<dependent dpndname="Dpnd01"/>
<addr1 addrname="Addr01">
<addr2 addrstate="CA"/>
</addr1>
</employee>
<employee empname="Emp02">
<addr1 addrname="Addr03">
<addr2 addrstate="NV"/>
</addr1>
</employee>
</root>

EmpDpnd Eaddr

Addr1

Employee

Dependent

Result

Addr2

The AS keyword renames XML data
items and nodes, it can be used to
replicate nodes to help split them.

3939

XML Duplicate and Shared XML Duplicate and Shared
Unambiguous Node ProcessingUnambiguous Node Processing
SELECT * FROM DeptSELECT * FROM Dept
LEFT JOIN LEFT JOIN CustCust ON ON DeptIDDeptID==CustDeptIDCustDeptID
LEFT JOIN LEFT JOIN EmpEmp ON ON DeptIDDeptID==EmpDeptIDEmpDeptID
LEFT JOIN LEFT JOIN AddrAddr AS AS AddrCAddrC ON ON CustIDCustID==AddrCustIDAddrCustID
LEFT JOIN LEFT JOIN AddrAddr AS AS AddrEAddrE ON ON EmpIDEmpID==AddrEmpIDAddrEmpID

Emp

Dept

Cust

Ambiguous
Shared Structure

Addr

Emp

Dept

Cust

Unambiguous
Hierarchical Structure

AddrC

Emp

Dept

Cust

Ambiguous
Duplicate Element Type

AddrAddrE Addr

This same SQL
handles both
duplicate and
shared data.

4040

Nonlinear Hierarchical ORDER BYNonlinear Hierarchical ORDER BY
SELECT SELECT CustIDCustID, , InvIDInvID, , AddrIDAddrID
FROM FROM CustViewCustView
ORDER BY ORDER BY AddrIDAddrID DescDesc, ,

InvIDInvID DescDesc, ,
CustIDCustID DescDesc

<root>
<cust custid="Cust03">
<addr addrid="Addr03"/>

</cust>
<cust custid="Cust02">
<invoice invid="Inv03"/>
<addr addrid="Addr04"/>
<addr addrid="Addr02"/>

</cust>
<cust custid="Cust01">

Cust

Invoice Addr

CustView Ordering

Cust1

Inv1 Inv2 Inv3

Cust2 Cust1

Ordering Inv before Cust is Trouble: Hierarchical ops like ORDER BY require
special nonlinear hierarchical processing
to make sense for SQL Hierarchical
processing. With Order By, each path is
ordered independently as in XML above.

Cust becomes out-of-order

4141

HierHier & XML Middleware Enabler& XML Middleware Enabler
Before Query:Before Query:

Establish ViewsEstablish Views
Preload XML (ETL)Preload XML (ETL)

SQL Pre Processing:SQL Pre Processing:
Determines structureDetermines structure
Optimizes structureOptimizes structure
Rewrite & submit SQLRewrite & submit SQL

RealReal--time Access:time Access:
StructureStructure--aware aware
Retrieve XML (EII)Retrieve XML (EII)
Return XML as rowsetReturn XML as rowset
Retain XML data orderRetain XML data order

SQL Post processing:SQL Post processing:
Remove replicated data Remove replicated data
Nonlinear data orderingNonlinear data ordering
Rowset to XMLRowset to XML

Query SQL Pre Processing

Real-time
Hier Access

SQL Post Processing

User’s SQL
Processor
Operating

Hierarchically

This Unique Implementation:
• Supports XML enables hier processing
• Uses in place SQL processor
• Needs no restaging of data
• Not XML centric, no learning curve
• ANSI SQL-92, vendor neutral
• Operates seamlessly & transparently
• Protects current SQL investment

4242

Dynamic Data Structure Creation RecapDynamic Data Structure Creation Recap
SELECTedSELECTed Data OutputData Output

Controls processing and output result structureControls processing and output result structure
With automatic node promotion and collectionWith automatic node promotion and collection

Combining Data StructuresCombining Data Structures
Joining and mashup of heterogeneous structuresJoining and mashup of heterogeneous structures
Mashup & node promotion = data virtualization Mashup & node promotion = data virtualization

Generating Variable Data StructuresGenerating Variable Data Structures
Multiple choice of view structure generationMultiple choice of view structure generation
Driven by data value further up or down the pathDriven by data value further up or down the path

Transforming Data StructuresTransforming Data Structures
Restructuring using data relationshipsRestructuring using data relationships
Reshaping using structure semanticsReshaping using structure semantics
Node splitting and renamingNode splitting and renaming

4343

The Power of Hierarchical The Power of Hierarchical
LEFT Outer Join Syntax RecapLEFT Outer Join Syntax Recap

ViewA LEFT JOIN ViewX
ON C.c=Z.c AND A.a=10

A LEFT JOIN B ON A.a=B.a
LEFT JOIN C ON A.a=C.a

LEFT JOIN
X LEFT JOIN Y ON X.x=Y.y

LEFT JOIN Z ON X.x=Z.z
ON C.c=Z.c AND A.a=10

Views Expanded

Shown on this slide:Shown on this slide:
• Automatically Combines and
Unifies Heterogeneous Structures

• Path Filtering Based Up/Down Path

• Directly Executable by SQL Engine

• Flexible Recombinant Properties

• Referencing Below Root is valid

• Access optimization: paths sliced out

• Processing optimization: reorganized

• Naturally Hierarchically Distributable

A
B C

X
Y Z

A
B C

X
Y Z

Outer join
models join
of views,
semantics
define result
structure.

4444

Combining Basic CapabilitiesCombining Basic Capabilities
Examples:Examples:
HierHier View SupportView Support
Data ModelingData Modeling
HierHier. Preservation. Preservation
Var. Length PathsVar. Length Paths
Multiple PathsMultiple Paths
MultiMulti--node Typesnode Types
DynDyn. Data Select. Data Select
HierHier. Data Filtering. Data Filtering
Node PromotionNode Promotion
Node CollectionNode Collection
Optimized AccessOptimized Access
Global ViewGlobal View
SchemaSchema--freefree

A
B C
D E

ViewR

CREATE View ViewR AS
SELECT * FROM A
LEFT JOIN B ON A.a=B.a
LEFT JOIN C ON A.a=C.a
LEFT JOIN D ON C.c=D.c
LEFT JOIN E ON C.c=E.c

A1B1C2D1E1
A1 C1D1
A1B2C2 E2

SELECT A.a,B.b,D.d,E.e
FROM ViewR
WHERE C=‘C2’

A1B1D1E1
A1B2 E2

A1

B1 D1 E1
B2 E2

Hierarchical
XML Result

X

4545

Combining Advanced CapabilitiesCombining Advanced Capabilities
Examples:Examples:
XML ViewXML View
HeterogeneousHeterogeneous
Data IntegrationData Integration
MashupMashup
Var. StructuresVar. Structures
LCA ProcessingLCA Processing
Linear FilteringLinear Filtering
HierHier. Ordering. Ordering
Preserve NodesPreserve Nodes
Unified ViewUnified View
XML Keyword XML Keyword
SearchSearch

A
B C

ViewR

CREATE View
ViewR AS
SELECT * FROM A
LEFT JOIN B

ON A.a=B.a
LEFT JOIN C

ON A.a=C.a

A1C2X1Y1
A2C2X2Y2

SELECT A.a, C.c, Y.y, Z.z
FROM ViewR LEFT JOIN ViewX
ON C.c=Z.c AND A=‘A1’
WHERE Y=‘Y1’ OR Z=‘Z2’
ORDER BY A.a, Y.y, Z.z
FOR XML KEEP NODE

ViewX

X
Y Z

CREATE XML
ViewX AS
X(XID Char(8)),
Y(YID Char(8),

YFK Char(8))
Parent X,
Z(ZID Char(8),

ZFK Char(8))
Parent X

A
B C

X
Y Z

Z1
Z2

Data Mashup

A

X
Y Z

C

A3C3X3Y3Z3

Converted to
Outer Join

Hierarchical
XML Result

4646

Advanced Capabilities 1Advanced Capabilities 1
Multipath nonlinear processingMultipath nonlinear processing

Dynamic increase of data value using structure semanticsDynamic increase of data value using structure semantics
Processes all queries regardless of internal complexityProcesses all queries regardless of internal complexity
Hierarchical data filteringHierarchical data filtering---- XML Keyword SearchXML Keyword Search

Multipath hierarchical data structure joinsMultipath hierarchical data structure joins
Performed by simple join of hierarchical structure viewsPerformed by simple join of hierarchical structure views
Can be performed interactively and heterogeneouslyCan be performed interactively and heterogeneously
Dynamically combines hierarchical structure semanticsDynamically combines hierarchical structure semantics

Linking below root allows structure mashupLinking below root allows structure mashup
Enables capability to mashup structures meaningfullyEnables capability to mashup structures meaningfully
Includes powerful lookIncludes powerful look--back and lookback and look--ahead capabilityahead capability
Mashup + node promotion = data virtualizationMashup + node promotion = data virtualization
Enables SQL TransformationsEnables SQL Transformations

4747

Advanced Capabilities 2Advanced Capabilities 2
Dynamic automatic variable structure generationDynamic automatic variable structure generation

Dynamically builds structures based on values in dataDynamically builds structures based on values in data
Can utilize cascading and embedded view operationCan utilize cascading and embedded view operation
Operates across multiple paths independentlyOperates across multiple paths independently

Dynamic user control of structureDynamic user control of structure
Dynamic SELECT list controls processing structureDynamic SELECT list controls processing structure
Dynamic combining views builds data structureDynamic combining views builds data structure
Transformations Change StructureTransformations Change Structure

Dynamic Structured Output FormattingDynamic Structured Output Formatting
StructureStructure--aware processing knows active structureaware processing knows active structure
Uses structure of result to format output dataUses structure of result to format output data
Active structure is dynamically controlled by userActive structure is dynamically controlled by user

4848

Advanced Capabilities 3Advanced Capabilities 3
Polymorphic anyPolymorphic any--toto--any structure transformany structure transform

Uses data relationships or just structure semanticsUses data relationships or just structure semantics
Utilizes SQL and hierarchical rowset dataUtilizes SQL and hierarchical rowset data
Two types of transforms, Restructure and ReshapingTwo types of transforms, Restructure and Reshaping

Multipath nonlinear hierarchical OperationsMultipath nonlinear hierarchical Operations
Single Order By orders multiple pathways separately Single Order By orders multiple pathways separately
Aggregation operates on separate pathwaysAggregation operates on separate pathways

Multipath internal LCA nonlinear processingMultipath internal LCA nonlinear processing
LCA processing limits the domain across pathwaysLCA processing limits the domain across pathways
Is automatic in ANSI SQL, but not in Is automatic in ANSI SQL, but not in XQueryXQuery
Responsible for keeping multipath result meaningfulResponsible for keeping multipath result meaningful

Untested natural and automatic operationsUntested natural and automatic operations
Natural hierarchical distributed processingNatural hierarchical distributed processing
Automatic parallel processing is possibleAutomatic parallel processing is possible
Semantic web RDF to SQL, Semantic web RDF to SQL, SQLfXSQLfX driven by RDFdriven by RDF

4949

Advanced Capabilities SummaryAdvanced Capabilities Summary
1) ANSI SQL standard and mathematically sound 1) ANSI SQL standard and mathematically sound
2) Ease of use (nonprocedural, navigationless, schema2) Ease of use (nonprocedural, navigationless, schema--free)free)
3) Hierarchically correct (principled3) Hierarchically correct (principled multipath processing)multipath processing)
4) Greater efficiency4) Greater efficiency (hierarchical processing optimization)(hierarchical processing optimization)
5) Fully interactive (dynamically process native XML)5) Fully interactive (dynamically process native XML)
6) Conceptual hierarchical processing on full structures6) Conceptual hierarchical processing on full structures
7) Queries can operate across the entire hierarchical structure7) Queries can operate across the entire hierarchical structure
8) Nonlinear multipath LCA hierarchical processing 8) Nonlinear multipath LCA hierarchical processing
9) Full nonlinear hierarchical data structure mashups9) Full nonlinear hierarchical data structure mashups
A) Variable data generated structure controlA) Variable data generated structure control
B) AnyB) Any--toto--any polymorphic structure transformationsany polymorphic structure transformations
C) All operations are semantically controlled and accurateC) All operations are semantically controlled and accurate
D) Data virtualization supportedD) Data virtualization supported
E) Natural distributed hierarchical processing E) Natural distributed hierarchical processing
F) Automatic parallel processing is possibleF) Automatic parallel processing is possible

All of the capabilities shown in this presentation can be reprodAll of the capabilities shown in this presentation can be reproduced on uced on
our online interactive demo at our online interactive demo at www.adatinc.com/demo.htmlwww.adatinc.com/demo.html

	ANSI SQL Transparent Dynamic Multipath Hierarchical Structured Data Processing For �Relational, XML, & Legacy Data
	Previous Database History�
	SQL/XML Industry Problems�
	SQL/XML Structured Data Processing Problems�
	A Working ANSI SQL XML Solution
	Structured Data Automatic Processing Benefits
	Current XML Hierarchical Data�
	Why Hierarchical Data structures are Powerful�
	Why Hierarchical Structured Data Processing is Powerful �
	Hierarchical Data Structure Types�
	Hierarchical Structured Data Makeup
	SQL Hierarchical Structured Data Can Be Stored in Relational Rowsets
	Mapping Relational SQL to Hierarchical XML
	Relational Logical Hierarchical View
	XML Physical Hierarchical View
	Joining Heterogeneous Views
	Logical Hierarchical Structures Offer Flexible Relational/XML Integration
	Heterogeneous Data Structure Mashup Uses Linking Below Root
	Association Table Use
	Hierarchical Data Filtering, Auto Output & Structure-free Processing
	Optimization, Global Views �and Node Promotion
	Global Query Uses Global Views
	Node Promotion and Nested View
	Node Promotion Override and XML Format Change
	Data Structure Mashup With Node Promotion = Data Virtualization
	Multipath Query Processing and its Required LCA Processing
	Multipath LCA Query Logic for Single SELECT Data
	Multipath LCA Query Logic for Multiple SELECT Data
	Compound WHERE Clauses also Require Their Own LCA
	Data Driven�Variable Structure Generation
	Variable Structure Generation �Using Multiple Choice
	Data Structure Transformation
	Restructure Transformation
	Semantic Any-to-Any Structure Reshaping Transformation
	Polymorphic Any-to-Any Reshaping
	Reshaping to Multipath Structure
	Multipath Querying Vs. Transform
	Renaming, Replicating, & Splitting�				 Nodes
	XML Duplicate and Shared �Unambiguous Node Processing
	Nonlinear Hierarchical ORDER BY
	Hier & XML Middleware Enabler
	Dynamic Data Structure Creation Recap
	The Power of Hierarchical �LEFT Outer Join Syntax Recap
	Combining Basic Capabilities
	Combining Advanced Capabilities
	Advanced Capabilities 1
	Advanced Capabilities 2
	Advanced Capabilities 3
	Advanced Capabilities Summary

