ANSI SQL Transparent Dynamic
Multipath Hierarchical Structured
Data Processing For
Relational, XML, & Legacy Data

Michael M David and Lee Fesperman
Advanced Data Access Technologies, Inc.
www.adatinc.com

The example results shown in this presentation can be reproduced
on our online interactive prototype at www.adatinc.com/demo.html

Previous Database History

e Hierarchical processing popular 40 years ago
e Used user navigational processing

e Multipath hierarchical query processing used
e Used nonprocedural navigationless processing
e Made possible by automatic semantic processing

e Relational processing replaces hierarchical
e Also uses nonprocedural navigationless processing
e But more flexibility with data independence from join

e Hierarchical processing technology forgotten
e No Internet to store hierarchical processing knowledge

e Hierarchical structures popular again with XML
e User procedural navigation is back again
e Where Is navigationless access for structured access?

SQL/XML Industry Problems

e Only proprietary vendor solutions
e All vendor solutions incompatible with each other
e Integration solutions are XML centric and procedural

e No satisfactory XML integration solution

e Hierarchical data value loss
e XML not fully integrated into SQL
e XML structured data processed as semistructured

e No hierarchical processing standard
e Invalid hierarchical processing result is possible
e Invalid hierarchical structure result is possible

e Markup and structured data processed the same
e Structured data needs to be processed differently!

3

SQL/XML Structured Data
Processing Problems

e Limited to linear single path processing
e Query data selection limitations
e Relational join single path mindset

e Requires user database navigation

_oss of dynamic hierarchical processing
_imits complex hierarchical processing

Prevents seamless & transparent processing

e Requires specific vendor user training
e Requires XML and vendor trained users

A Working ANSI SQL XML Solution

e Limits processing to only structured data
e Allows unambiguous nonprocedural querying
e Enables navigationless schema-free operation

e Only performs hierarchical operations
e Only uses hierarchical Left Outer Join operation
e Naturally supports full hierarchical structures
e Allows hierarchical structure-aware operation

e Supports inherent hierarchical processing
e This solves relational/XML data integration
e This also solves SQL to XML system mapping
e Transparent multipath hierarchical processing °

Structured Data Automatic
Processing Benefits

e SOL transparent XML integration
e ANSI SQL-92 syntax and semantics, not XML centric
e Nonprocedural and navigationless, Interactive
e No knowledge of structure necessary, schema-free

e Multipath nonlinear hierarchical processing
e Hierarchically accurate results automatically
e Dynamic hierarchical processing optimization
e Dynamic output uses hierarchical result structure

e SQL hierarchical views fully functional
e Global views with no overhead and maximum reuse
e Global hierarchical queries now possible
e Hierarchical data filtering & XML keyword search

6

Current XML Hierarchical Data

e XML Was Created as a Markup Language
e Unstructured Mapped to Semistructured

e Structured Vs. Semistructured Data

e Same as Fixed Vs. Fuzzy Meaning

e Why Semistructured Requires Navigation

Structured Semistructured
DEIE] Data The multiple B
nodes in this
/A{ A structure make
Bl IC B RC K it ambiguous
I\ for querying
BINI= BED without user
Unambiguous Ambiguous navigation.

Query Structure Query Structure

Why Hierarchical Data
structures are Powerful

e Automatic Data and Path Reuse

e Extending Path Increases Data Value

e Adding Paths Increase Data Value Further
e Hierarchical XML Becoming Ubiquitous

e Data Structures are Unambiguous

Data/Path Creating more
A value than is
1) AIB o~ collected,
2) AIC Bl [C automatic
3) A/IC/D AN nonlinear data
4) AICIE Dl E value increase.

Why Hierarchical Structured
Data Processing is Powerful

e Dynamic Multipath Query Combinations

e Multipath Data Value Grows Continually

e Every Node is Related to Every Other Node

e No. of Possible Queries Becomes Unlimited

e Automatic Processing = Unlimited Complexity

Mview

A
N

7
B [C

AN

-
D

E

Increasingly Complex
Multipath Queries

1) SELECT B,C FROM Mview

Naturally utilizes the inherent
hierarchical semantics in
multipath queries.

2) SELECT B,D FROM Mview WHERE A=2

3) SELECT A,B FROM Mview WHERE E=5

4) SELECT B,C FROM Mview WHERE D=1 AND E=5

5) SELECT D,E FROM Mview WHERE B=3 OR C=4 o

Hierarchical Data Structure Types

e XML is self defining contiguous and nested
e No foreign key relation needed to make structure

e |IBM's IMS database is discontinuous
e Internally linked

e Structured VSAM is contiguous
e With hierarchical level & data occurrence counts

e Flat tabular objects hierarchically modeled
e Relational tables, flat files, spread sheets

All support same hierarchical operation and principles

10

Hierarchical Structured Data Makeup

e Multiple Node Types
e Nodes Support Multiple Data Occurrences
e Naturally Built With 1 to M Relationships

e Hierarchical Data Preservation Operation-
Naturally Support Variable Length Paths

Co Not to be confused with
function driven single node
external hierarchical data
structure processing.

Emp

] - Suitable for IMS, Structured

/ \M VSAM, XML, COBOL FD and
_ _ hierarchically modeled
Dpnd Proj Dpnd1@Proj2 Relational and flat data.

SQL Hierarchical Structured Data
Can Be Stored in Relational Rowsets

e Multiple Node Types in Relational Rowset
e Node Multiple Data Occurrences in Rowset

e Multiple Pathways in Rowset
e Variable Length Pathways in Rowset

Dpnd1 @Proj2

Relational Rowset

Co

Emp

Dpnd

Proj

Col

Empl

Dpndl

Col

Emp2

Proj2

CoZ2

Emp3

Proj3

Co2

Emp3

Proj4

Hierarchical
structure
preserved
INn rowset,
in and back
out again.

12

Mapping Relational SQL to
Hierarchical XML

Input View Conceptual Hierarchical Result

A Query A . .
A\ SELECTAa Dd Ee <N, Shown on this slide:
Ioy=Ahd FROM GlobalView DlE 1. Conceptual Level
WHERE B.b="B1” : :
b XML 2. Multipath Processing
Output| 3. Hierarchical Filtering
4. Dynamic Data Select
Working Set — Result Set .
5. Access Optimization
A|lB|C|D]|E A | D | E _
6. Global View Support
Al |[B1 |C1 |D1 |El Al |[D1 |El
Al |B1 |C1|D2 |E1 Al |D2 |E1 | /- Schema-free Query
Al |81 [C1 |D1 |E2 Al |p1 |e2 | 8 NodePromotion
Al |B1 |C1 |D2 |D2 Al |D2 |D2 9. Auto Output Format
Al (B2 |C1 (D1 |El 13

Relational Logical Hierarchical View

CREATE VIEW EmpView AS

SELECT * FROM Emp Hierarchical SQL

LEFT JOIN Dpnd -~ gl data modeling and

ON EmpID:DpndEmplD Iis);?r::ZrS\EIcnsgdeﬁned
AND DpndCode='D’ '

LEFT JOIN Eaddr ON EmpCustiD=EaddrCustID;

} .
SELECT EmplID, DpndID, [S%00t=

=€efp: enpra==EmnpoL==
EaddrID SN o i He
) — <@jonal dpnard="DpndOL=s/>
FROM EmpView

0=TAdARO1L /7>

Logical hierarchical SQL
view and semantics
processed directly by
relational engine making it
operate fully hierarchically.

XML Physical Hierarchical View

CREATE VIEW CustView AS

CREATE XML CustVi — I

Cust(TR SELECT * FROM Cust
CustID Char(8), LEFT JOIN Invoice
CustStorelD Char(8)), ON CustID=InvID

Invoice(. LEFT JOIN ADDR

Converted to
SOL CustV 1
INVCUSHID Char(g), I tidadidl

InvStatus Char(8)) Parent Cust, SELECT Cust, Invoice, Addr
Addr(FROM CustView l

AddrID Char(8),

o 100 P
US

AddrCustID Char(8), <cu *Cusitod™
AddrState Char(8)) Parent Cust <In VA== Invod*/>
t <1 INVIG=SinVvezZ=7>
Cust <2l TI0="Addr0d*7>
/ \ This SQL created outer join view syntax is
Invoice Addr used as a hierarchical map of the physical
IMS CustView for seamless operation. .

Joining Heterogeneous Views

SELECT EmplD, DpndID, EaddrID,
CustID InvID, AddrID

FROM EmpView

LEFT JOIN CustView

ON EmpCustID=CustID

Hierarchical Heterogeneous
Structure Join Logical View

Emp of Result

Dpnd BREaddr faadi R =111 —

PN

Cust Dpnd| |[Eaddr| | Cust
/N /- N\

Invoice| | Addr Invoice| | Addr

Emp logical and Cust physical views are
both hierarchically modeled in the same
way in SQL making for a seamless,
unified and logical hierarchical join.

16

Logical Hierarchical Structures Offer
Flexible Relational/ XML Integration

Logical
Tables

Physical | __pata Type
XML

“~Mapping
“~Modeling

\ Log. and Phy.
Structures have

same hierarchy
op principles

“~_ Heterogeneous
Logical
Structure

Data Model: Logical

e Natural hierarchical

e Common structures
Features: solve

e Abstraction hierarchical

e Consistency fixed structure
e Seamless problems.
Capabilities:

e Data Integration

Solves Rel and Hier Problems
Separates Structure from Data
Hierarchical Structure Flexibility
Offers Flexibility to Fixed Structures

17

Heterogeneous Data Structure
Mashup Uses Linking Below Root

SELECT EmplID, DpndID, InvID,
AddrID, EaddrID, CustID

FROM EmpView LEFT JOIN
CustView ON EaddrID=AddrID

WHERE CustID <> "Cust02”

Link Below Root Result Structure

— Emp —
_—~
Dpnd| |Eaddr
Cust | | Cust Mashups allow linking anywhere
Invoic/e ;d(;r Invoi/ce\Addr into the lower level structure. We
determined this was valid and what
Dashed arrow is linkage. the new semantic structure is.

18

Solid arrow is new structure.

Assoclation Table Use

SELECT EmpID, DpndID, EaddrID, CustID, InvoicelD

AddrID, IntersectData

FROM EmpView

LEFT JOIN AssociationTable On DpndID=DpndX
LEFT JOIN CustView ON CustID=CustX

l

= Result
mp | EmpView
L=MR] P Structure Emp\
Dpnd| |Eaddr| association Dpnd| [Eaddr
| / Table !
DpndX| CustX |IntersectData| = | |ntersectData
Cuwst CustView
LSt /Cust\
Invoice| |Addr Invoicel | Addr

Association Table
Capabilities added:

« External Relationships
« Mto M Relationships

* Intersecting Data

e Can be Transparent

* Retains Hier Structure

19

Hierarchical Data Filtering, Auto
Output & Structure-free Processing

Input View Conceptual Hierarchical Result Automatic
uer
Ar—— uery — A — | Structured XML
el . SELECT A.a,D.d,Ee <& outbut E tti
fensinie) FROM Globalview (D] [E utput Formatting

WHERE B.b=“B1”

E

ix:[D

e Hierarchical WHERE clause global data filtering
e Cousin nodes like node C above are filtered from B node
e This makes this a more internally complex multipath query

e Structure-free processing
e Navigationless XML access, no need to know structure

e Automatic structure-aware output formatting
e Result structure known from outer join syntax modeling

Optimization, Global Views
and Node Promotion

Input View Conceptual Hierarchical
Query

SELECT A.a,D.d, E.e
FROM GlobalView
WHERE B.b="B1”"

A

X D

E

Result

— A

AN

D

E

This is a conceptual

guery where the input
structure is not known
and the output adapts
to the dynamic result.

e Hierarchical optimization can remove from access -
e Unreferenced data nodes not on path to referenced data
e Dynamically controlled by SQL’s variable SELECT list

e Optimization makes all views global views
e Because they have no overhead for unreferenced fields

e Node promotion closes around unselected nodes

e This happens in relational processing too

21

Global Query Uses Global Views

Global Query EmpCust
Emp
* A 4 \
SELECT Dpna{Eaddr Cust

FROM EmpCust
WHERE InvStatus='0O’

Wl
Invoice ﬁb\ddr

Global Data Filter

Global views allow entire
structures to be defined
and queried with no
overhead, more user
friendly. Global query
allows hierarchical
filtering of entire view.

Node Promotion and Nested View

CREATE VIEW EmpCust AS
SELECT * «—— |Hierarchical views can be nested.
FROM EmpView LEFT JOIN CustView |VI®WS can contain views.

ON EmpCustID=CustID

l

SELECT EmplD, DpndID,
InvID, AddrID
FROM EmpCust

l

EmpCust Node

Promotion

Emp | —
p NN

Invoice| | Addr

O
0
0

Invoice| | Addr Not SELECTed 2

Node Promotion Override and XML

Format Change

SELECT EmplD, DpndID,
InvID, AddrID
FROM EmpCust
FOR XML ELEMENT KEEP NODE

l

EmpCust No Node
Promotion

Emp —

N
Dpnd| | Cust

/. N\

Invoice| | Addr Invoice Addr

Without node promotion, unselected
nodes are output empty. XML output
format was changed to Element style.

Data Structure Mashup With Node
Promotion = Data Virtualization

SELECT EmpID, DpndID,
InvIiD, AddrID
FROM EmpView
LEFT JOIN CustView
l ON EaddrIiD=AddrID

Link Below Root pagyit Output with

Node Promotion

Dpnd| |[Invoice| | Addr

v
Invoicel | Addr Mashups with node promotion gives
aggregated result of the data. This has
Dashed boxes are unselected, not output. same effect as data virtualization. s

Multipath Query Processing and
Its Required LCA Processing

e Multipath query references multiple pathways-
e and uses a WHERE data filtering operation
e For example: Selecting data based on data in another path
e This requires a special processing using LCA

e Lowest Common Ancestor (LCA) Node
e The LCA node is the lowest common ancestor node -
e Located between two pathway node points in the structure
e Used to keep the hierarchical query result meaningful

e Two types of SQL multipath LCA usage
e SELECT with WHERE clause referencing two different paths

e Compound WHERE clause referencing two different paths
» This LCA processing solves the XML Keyword Search problem

e These two uses of LCA can be combined causing nesting
e Each SELECT data item can have its own LCA

26

Multipath LCA Query Logic for
Single SELECT Data

SELECT DpndID Lowest Common Ancestor (LCA)
FROM EmpCust processing for the SQL SELECT
WHERE AddrIiD="Addr01’ clause will automatically process
l multiple LCA nodes when multiple
specified output data is located
EmpCust across different pathways.

"Emp | SELECT LCA

Dpnd iEaddri iCusti .
[SR, N,
Invoice! | Addr ;

SELECT data types Dpnd and
Invoice generate different LCAS.

27

Multipath LCA Query Logic for
Multiple SELECT Data

SELECT DpndID, InvID
FROM EmpCust
WHERE AddrID="Addr01’

l

EmpCust

Dpnd| 'Eaddr iCust_E“"” _

SELECT data types Dpnd and
Invoice generate different LCAS.

Lowest Common Ancestor (LCA)
processing for the SQL SELECT
clause will automatically process
multiple LCA nodes when multiple
specified output data is located
across different pathways.

Compound WHERE Clauses also
Require Their Own LCA

SELECT DpndID
FROM EmpCust
WHERE InvID="Inv01l’
AND AddrID="Addr01’

l

EmpCust

SELECT LCA

Lowest Common Ancestor (LCA) node
processing for multipath queries is
necessary. We found it working in SQL
naturally on both the SELECT and
WHERE operations. Academic projects
are currently researching how to add it to
XQuery. LCA is the lowest node
between node points on separate paths.

WHERE LCA

Dpnd| 'Eaddr: ! ‘Cust w-

S

This LCA example is actually a

combined LCA and nested LCA example

29

Data Driven
Variable Structure Generation

SELECT EmplD, DpndID, InvID,
AddrID, EaddrID,
CustID, EmpStatus
FROM EmpView
LEFT JOIN CustView
ON EmpCustID=CustID
l AND EmpStatus="F"

Join Structure Variable Structure

Emp — Emp
< |2 e

P —
Dpnd] | [Eaddri Ippnd :
A 4 +
/Cus{ /CUSt\ Current EmpStatus data value
Invoicel | Addr nvoicel [agar] |1 controls if this CustView data
occurrence expands or not. 30

Variable Structure Generation
Using Multiple Choice

SELECT EmplID, DpndID, InvID, Variable Structure
AddrID, EaddrID,
CustID, EmpStatus
FROM EmpView
LEFT JOIN CustViewF
ON EmpCustID=CustID Insert Full Time View Here
AND EmpStatus="F"
LEFT JOIN CustViewP

ON EmpCustID=CustID
AND EmpStatus="P”

Insert Part Time View Here

}
Emp /
- AN Current EmpStatus data value
Dpnd | |CustViewF| |CustViewP controls which view expands.
Control value is up or down path. |31

Data Structure Transformation

Two Basic Types of Data Structure Transformation
e Restructuring: uses data relationships in the data
e Restructuring: Uses only the structure semantics in the data

Restructuring

e Used to bring out new data relationships

e Also removes data and nodes

e New structure is secondary, driven new relationships desired
Reshaping

e Used to reshape data structure to a desired new structure

e No data relationships dependency

e Any-to-any data structure transformation is possible

e Reshaping is driven by structures natural semantics

SOQL transformation operation assures accuracy
e Restructuring and Reshaping operations can be combined

32

Restructure Transformation

SELECT X.EmplID, X.DpndID, Y.InvID, X.AddrID

FROM EmpCust Y
LEFT JOIN EmpCust X ON Y.InvCustiID=X.EmpCustIiD

EmpCust X.Emp

T -
X.Dpnd| !Eaddr' 'X.Cust,
e 1

Y.Invoice | Addr

Result |Invoice / Restructuring SQL transformation:
1) Takes structure apart

Emp 2) Disregards unwanted portions
N\ 3) Recombines it differently --
Dpnd Addr 4) Uses different data relationships

5) This introduces new semantics 33

Semantic Any-to-Any Structure
Reshaping Transformation

SELECT X.DpndID, Y.EmpID, Y.EaddrID
FROM EmpView X
LEFT JOIN EmpView Y
ON X.DpndID=Y.DpndID

l

] Result
EmpView Structure
X I/E[']E_;““ Dpnd| —
Dpnd| !Eaddr: _ _
! \ “““ __, |Emp Reshaping uses only the semantics of the
! data structure to transform it into the desired
Y ' L[Emp Eaddr structure. No new data relationships are
:_[Sp:)ﬁg: E\a ddr needed so this method can always be used.
R 2 : Linking below the root is utilized. 34

Polymorphic Any-to-Any Reshaping

SELECT X.DpndID, Y.EaddrID, Z.EmpID

FROM EmpView X

LEFT JOIN EmpView Y ON X.DpndID=Y.DpndID
LEFT JOIN EmpView Z ON Y.EaddriD=Z.EaddrID

EmpView Target
I Structure
X 1.Emp.
i Dpnd
Dpnd| 'Eaddr
: \ """ — |Eaddr|—
Y | {Emp !
T Emp
'Dpnd! |Eaddr : : -
“““ / ! This reshaping example moves only one node at a time
i which makes its operation polymorphic allowing any
Z Emp] shaped input structure that uses the same data names.
e - . Reshaping uses comparing the structure to itself for
'Dpnd' 'Eaddr R) ’ : : 35
—————— - - positioning since data relationships are not relied on.

Reshaping to Multipath Structure

SELECT X.DpndID, Y.EaddrID, Z.EmpID

FROM EmpView X

LEFT JOIN EmpView Y ON X.DpndID=Y.DpndID
LEFT JOIN EmpView Z ON X.DpndID=Z.DpndID

EmpView Target

I Structure

Emp ! X

SN — Dpnd| —,
Dpnd| !Eaddr / \
YN\ Eaddr || Emp

This reshaping example demonstrates reconstructing
E Emp| 7 to a multipath nonlinear structure using SQL’s
anas 2 AN hierarchical data modeling. The SQL hierarchical
Dpnd; Eaddr; semantic operation helps preserve correctness. 3

Multipath Qulerylng Vs. Tra}nsform
Multipath Multipath Transformed Transformed
ViewX ViewX Data ViewX ViewX Data
A 10 B 12] 16
AN ARN
B| [C 12] [18 a 10/ [10
16 C 18] [18
SELECTA, C SELECTA, C A simple
FROM ViewX FROM ViewX | multipath
WHERE B>10 WHERE B>10 guery can
Output Data usually avoid
Multiple use Structure Replication | Specifically tragsforms
multipath . . transforms an preser_/i
schema-free 10 A 10/[10] | structure A/B to structure wit
queryuses & |[—L — — <—| BJA changing morel accurate
preserves 18] [C| [18][18] |semanticsfrom | LIeSUTS:
data structure 1-to-M to M-to-1 37

Renaming, Replicating, & Splitting

SELECT EmpID EmpName, DpndID AS DpndName, Nodes
Addrl.EaddrID AS AddrName,
Addr2.Eaddrstate AS AddrState
FROM Emp AS Employee
LEFT JOIN Dpnd AS Dependent ON EmpID=DpndEmpID and DpndCode='D'
LEFT JOIN EAddr AS Addrl ON EmpCustiID=Addr1.EAddrCustID
LEFT JOIN EAddr AS Addr2 ON Addrl.EaddrCustiD=Addr2.EAddrCustID

T

Dpnd| | Emp | |[Eaddr

Result

Employee
e ~ >
Dependent| |Addrl
I
Addr2

The AS keyword renames XML data
items and nodes, it can be used to
replicate nodes to help split them.

XML Duplicate and Shared
Unambiguous Node Processing

SELECT * FROM Dept

This same SQL
handles both

LEFT JOIN Cust ON DeptID=CustDeptID |duplicate and
LEFT JOIN Emp ON DeptID=EmpDeptID
LEFT JOIN Addr AS AddrC ON CustID=AddrCustID
LEFT JOIN Addr AS AddrE ON EmpID=AddrEmpID

N\

Ambiguous

l

Unambiguous

shared data.

Ambiguous
Shared Structure Hjerarchical Structure Duplicate Element Type

Dept

N

Cust

Emp

Dept Dept
Z RN N\
Cust| |[Emp| ~ ° |Cust| |Emp
Addr AddrC| |AddrE

Addr

Addr %

Nonlinear Hierarchical ORDER BY

SELECT CustID, InvID, AddrID

FROM CustView

ORDER BY AddrID Desc,
InviD Desc, —
CustID Desc

CustView Ordering

Cust

Invoice| | Addr

Ordering Inv before Cust is Trouble:

Hierarchical ops like ORDER BY require
special nonlinear hierarchical processing

Custl| |Cust2]| |Custl to make sense for SQL Hierarchical
processing. With Order By, each path is
Inv1 Inv2 Inv3 ordered independently as in XML above.

40

Cust becomes out-of-order

Hier & XML Middleware Enabler

Before Query:
e Establish Views
e Preload XML (ETL)

Query—SQL Pre Processing

User’'s SQL :
SCEIRINERE Processor SQL Pre Processing:
Hier Access Operating e Determines structure
Hierarchically e Optimizes structure
e Rewrite & submit SQL
SQL Post Processing Real-time Access:
e Structure-aware
This Unigque Implementation: e Retrieve XML (Ell)
« Supports XML enables hier processing e Return XML as rowset
* Uses in place SQL processor e Retain XML data order
* Needs no restaging of data TR
* Not XML centrig, n?) learning curve SQL Post proqessmg'
« ANSI SQL-92, vendor neutral ¢ Remove replicated data
e Operates seamlessly & transparently e Nonlinear data ordering
* Protects current SQL investment ® Rowset to XML 1

Dynamic Data Structure Creation Recap
e SELECTed Data Output

e Controls processing and output result structure
e With automatic node promotion and collection

e Combining Data Structures
e Joining and mashup of heterogeneous structures
e Mashup & node promotion = data virtualization

e Generating Variable Data Structures
e Multiple choice of view structure generation
e Driven by data value further up or down the path

e Transforming Data Structures
e Restructuring using data relationships
e Reshaping using structure semantics
e Node splitting and renaming

42

The Power of Hierarchical
LEFT Outer Join Syntax Recap

Shown on this slide:

\ * Automatically Combines and

Views Expanded

Unifies Heterogeneous Structures
« Path Filtering Based Up/Down Path
 Directly Executable by SQL Engine

» Flexible Recombinant Properties

A A — » Referencing Below Root is valid
= Fal Outer join
Bl [C] [B][C] |TP°aekon | Access optimization: paths sliced out
] semantics . : T :
/X\: /X\ ettt Processing optimization: reorganized
Y |Z Y| [7] LStructure. - Naturally Hierarchically Distributabite

Combining Basic Capabilities

X!

ViewR

A
N

/
B][C

AN

i
D

E

T

l

Al

Examples:

Hier View Support
Data Modeling
Hier. Preservation
Var. Length Paths
Multiple Paths
Multi-node Types
Dyn. Data Select
Hier. Data Filtering
Node Promotion
Node Collection
Optimized Access
Global View
Schema-free

Combining Advanced Capabilities

ViewR

A

N\

7
B

C

ViewX

X

—

N\

7
Y

Z

AND A="AT’

KEEP NODE

Data Mashup

—

X2

A3IC3X3

Y3

Examples:
XML View

Heterogeneous
Data Integration

Mashup

Var. Structures
LCA Processing
Linear Filtering
Hier. Ordering
Preserve Nodes
Unified View

XML Keyword
Search

-45

Advanced Capabilities 1

e Multipath nonlinear processing
o Dynamic increase of data value using structure semantics
» Processes all queries regardless of internal complexity
» Hierarchical data filtering-- XML Keyword Search

e Multipath hierarchical data structure joins
o Performed by simple join of hierarchical structure views
o Can be performed interactively and heterogeneously
o Dynamically combines hierarchical structure semantics

e Linking below root allows structure mashup
o Enables capability to mashup structures meaningfully
o Includes powerful look-back and look-ahead capability
» Mashup + node promotion = data virtualization
» Enables SQL Transformations 46

Advanced Capabilities 2

e Dynamic automatic variable structure generation
o Dynamically builds structures based on values in data
» Can utilize cascading and embedded view operation
» Operates across multiple paths independently

e Dynamic user control of structure
o Dynamic SELECT list controls processing structure
» Dynamic combining views builds data structure
o Transformations Change Structure

e Dynamic Structured Output Formatting
» Structure-aware processing knows active structure
» Uses structure of result to format output data
o Active structure is dynamically controlled by user

47

Advanced Capabilities 3

e Polymorphic any-to-any structure transform

o Uses data relationships or just structure semantics

o Utilizes SQL and hierarchical rowset data

» Two types of transforms, Restructure and Reshaping
e Multipath nonlinear hierarchical Operations

» Single Order By orders multiple pathways separately

o Aggregation operates on separate pathways
e Multipath internal LCA nonlinear processing

» LCA processing limits the domain across pathways

o Is automatic in ANSI SQL, but not in XQuery

» Responsible for keeping multipath result meaningful
e Untested natural and automatic operations

o Natural hierarchical distributed processing

o Automatic parallel processing is possible

o Semantic web RDF to SQL, SQLfX driven by RDF

Advanced Capabilities Summary

1) ANSI SQL standard and mathematically sound

2) Ease of use (nonprocedural, navigationless, schema-free)
3) Hierarchically correct (principled multipath processing)
4) Greater efficiency (hierarchical processing optimization)
5) Fully interactive (dynamically process native XML)

6) Conceptual hierarchical processing on full structures

7) Queries can operate across the entire hierarchical structure
8) Nonlinear multipath LCA hierarchical processing

9) Full nonlinear hierarchical data structure mashups

A) Variable data generated structure control

B) Any-to-any polymorphic structure transformations

C) All operations are semantically controlled and accurate
D) Data virtualization supported

E) Natural distributed hierarchical processing

F) Automatic parallel processing is possible

All of the capabilities shown in this presentation can be reproduced Bn
our online interactive demo at www.adatinc.com/demo.html

	ANSI SQL Transparent Dynamic Multipath Hierarchical Structured Data Processing For �Relational, XML, & Legacy Data
	Previous Database History�
	SQL/XML Industry Problems�
	SQL/XML Structured Data Processing Problems�
	A Working ANSI SQL XML Solution
	Structured Data Automatic Processing Benefits
	Current XML Hierarchical Data�
	Why Hierarchical Data structures are Powerful�
	Why Hierarchical Structured Data Processing is Powerful �
	Hierarchical Data Structure Types�
	Hierarchical Structured Data Makeup
	SQL Hierarchical Structured Data Can Be Stored in Relational Rowsets
	Mapping Relational SQL to Hierarchical XML
	Relational Logical Hierarchical View
	XML Physical Hierarchical View
	Joining Heterogeneous Views
	Logical Hierarchical Structures Offer Flexible Relational/XML Integration
	Heterogeneous Data Structure Mashup Uses Linking Below Root
	Association Table Use
	Hierarchical Data Filtering, Auto Output & Structure-free Processing
	Optimization, Global Views �and Node Promotion
	Global Query Uses Global Views
	Node Promotion and Nested View
	Node Promotion Override and XML Format Change
	Data Structure Mashup With Node Promotion = Data Virtualization
	Multipath Query Processing and its Required LCA Processing
	Multipath LCA Query Logic for Single SELECT Data
	Multipath LCA Query Logic for Multiple SELECT Data
	Compound WHERE Clauses also Require Their Own LCA
	Data Driven�Variable Structure Generation
	Variable Structure Generation �Using Multiple Choice
	Data Structure Transformation
	Restructure Transformation
	Semantic Any-to-Any Structure Reshaping Transformation
	Polymorphic Any-to-Any Reshaping
	Reshaping to Multipath Structure
	Multipath Querying Vs. Transform
	Renaming, Replicating, & Splitting�				 Nodes
	XML Duplicate and Shared �Unambiguous Node Processing
	Nonlinear Hierarchical ORDER BY
	Hier & XML Middleware Enabler
	Dynamic Data Structure Creation Recap
	The Power of Hierarchical �LEFT Outer Join Syntax Recap
	Combining Basic Capabilities
	Combining Advanced Capabilities
	Advanced Capabilities 1
	Advanced Capabilities 2
	Advanced Capabilities 3
	Advanced Capabilities Summary

