
Chapter 12, Nested Relational Processing Prototype
(from the book Advanced ANSI SQL Data Modeling and Structure Processing by
Michael M David, published and copyrighted 1999 by Artech-House Publishers)

The examples in this chapter show the operation of an SQL nested relational database
processor prototype that is driven by the inherent data modeling capability of the ANSI-
92 Outer join. It utilizes Advanced Data Access Technologies’ patented Data Structure
Extraction (DSE) technology, described in Chapter 9, to dynamically extract the data
structure meta information naturally present in Outer join specifications. This
automatically available information is used to control the nested relational processing.
This processing produces results that are semantically superior to standard SQL and are
more semantically accurate. It enables the nested relational processor prototype to
seamlessly conform to the underlying data structure of the SQL query request.

This automatic conforming to the data structure can not be performed with current
standard nested relational processors which require that the data structure be predefined
and the data stored as a fixed structure. This nested relational prototype does not require
that the data be in fixed format or that the data structure be predefined. The data is stored
as standard first normal form relational tables. This is a major advantage this prototype
has over standard nested relational processors, giving it data and structure independence.
This is in contrast with standard nested relational database systems that store their data as
a pre-defined structured that greatly restricts data and structure independence.

12.1 Nested Relational Prototype Operation

Nested relational databases access and process data in non-first normal form (structured
format). This eliminates having to flatten the data into first normal form (table format) as
standard relational systems do. This flattening of the data can introduce unnecessary
replicated data. By not having to flatten the data, nested relational processing can
preserve the data structure so that all aggregate and summary operations will be accurate
and can be controlled with more flexibility. This is reflected in the data structure of the
displayed nested relational output in the examples shown in this chapter where a blank
data field indicates that the previous column value is still in effect. Because a missing
data value can inadvertently indicate that the previous column value is still in effect,
missing values have a dash inserted in their column to indicate they are missing.

The first entry of each example is the Outer join specification that is processed directly
by the SQL nested relational prototype. The prototype then extracts the data structure
meta information embedded in the Outer join specification using the DSE technology
described in Chapter 9, Section 9.1, and displays its meta data structure information in
table form. This meta data structure information includes an Outer join semantic
optimization indication which is flagged under its ACCESS column when a table in the

Chapter 12, Nested Relational Processing Prototype

data structure does not require access. Each data structure example includes an
hierarchical structure diagram to help you visualize the data structure being processed, it
is not output from the prototype.

Lastly, using the data structure meta information supplied from the Outer join
specification, the prototype accesses its internal first normal form (flat) relational
database in a manner that will produce the structured data results shown in WYSIWYG
(What You See Is What You Get) format. This nested relational processing can be
implemented in any standard SQL system relying only on the data structure meta
information supplied from Outer join statements.

12.2 Basic Data Modeling

The examples in Figures 12.1 and 12.2 below demonstrate the data modeling capabilities
of the ANSI-92 SQL Outer join. They show how the nested relational prototype using the
DSE technology can process standard relational data in a nested relational form. In these
examples, three tables, Department, Employee and Dependent are joined in two different
ways using the same relationships to form two different data structures involving one-to-
many and many-to-one relationships. Notice in the query outputs that there is no
unnecessary data replication. All the data replication counts are accurate regardless at
what data structure level the data is at or if there are multiple legs in the data structure as
in Figure 12.2. This allows aggregate operations applied anywhere in the data structure to
be accurate. While the example in Figure 12.2 does show replicated data (HR and Acct),
this correctly reflects the many-to-one data structure relationship of employee over
department and its semantics (i.e. many employees have the same department). And
notice further, that these replication occurrence counts are correct, in a standard relational
first normal form result, HR would have been replicated three times instead of the correct
two.

Besides the two different data structures in Figures 12.1 and 12.2, there is also a
difference with the data values displayed or not displayed in the two examples. The first
example’s query output in Figure 12.1 includes a department named “MIS” while the
second example doesn’t. The second example’s query output in Figure 12.2 includes an
employee named “Irv” with a dependent named “Ben” while the first example in Figure
12.1 doesn’t. These differences are properly reflected in the semantics of the data
structures involved. The “MIS” department isn’t included in the example’s query output
in Figure 12.2 because this query models an employee view (Employee over Department
and Dependent) and there are no employees in the “MIS” department. The employee
“Irv” and his dependent “Ben” aren’t included in the first example’s query output in
Figure 12.1 because this query models a department view (Department over Employee
over Dependent) and “Irv” and his dependent “Ben” do not belong to any known
department. This was covered in Chapter 5, Section 5.1.

Advanced ANSI SQL Data Modeling and Structure Processing, Page 12-2

Chapter 12, Nested Relational Processing Prototype

SELECT DeptName, EmpName, DpndName FROM Department LEFT Employee

 ON DeptNo=EmpDeptNo LEFT Dependent ON EmpNo=DpndEmpNo

 TABLE NAME LEVEL PARENT ACCESS
 1 Department 1 0 Yes
 2 Employee 2 1 Yes
 3 Dependent 3 2 Yes

 DEPTNAME EMPNAME DPNDNAME
 Acct Mike -
 John -
 HR Mary Jay
 Ken
 Mark Kay
 MIS - -

Figure 12.1 Department view processed by nested relational processor

SELECT EmpName, DeptName, DpndName FROM Employee LEFT Department

 ON DeptNo=EmpDeptNo LEFT Dependent ON EmpNo=DpndEmpNo

 TABLE NAME LEVEL PARENT ACCESS
 1 Employee 1 0 Yes
 2 Department 2 1 Yes
 3 Dependent 3 1 Yes

 EMPNAME DEPTNAME DPNDNAME
 Mike Acct -

Employee

Department

Employee

Dependent

Dependent

Department

 John Acct -
 Mary HR Jay
 - Ken
 Mark HR Kay
 Irv - Ben

Figure 12.2 Employee view processed by nested relational processor

Advanced ANSI SQL Data Modeling and Structure Processing, Page 12-3

Chapter 12, Nested Relational Processing Prototype

12.3 Many-to-many Relationships

The examples in Figures 12.4 and 12.5 operate on a Parts and Suppliers, many-to-many,
relationship described in Chapter 7, Section 7.4. In this relationship, one supplier can
have many parts and one part can have many suppliers. This does not present a problem
for the nested relational prototype and both application views in the examples in Figures
12.4 and 12.5 produce a hierarchically structured (many-to-many) result. Most texts on
data modeling state that many-to-many relationships form one-to-many hierarchical
relationships. A many-to-many relationship is actually a combination of many-to-one and
one-to-many. In the one-to-many portion, replications are suppressed while in the one-to-
many portion they are not. In the example in Figure 12.4, Parts over Suppliers, parts are
not replicated, but suppliers are (P1 occurs once while S1 occurs three times).

It is worth noting that many-to-one relationships are found naturally in the data base and
do not require special considerations for processing or printing. But with one-to-many
relationships, special handling considerations are needed because the data is nested and
requires special consideration when processing and displaying.

Many-to-many relationships require the use of an association table as described in
Chapter 7, Section 7.4. The association table used in the SQL examples in Figures 12.4
and 12.5 is PartSupplier and is also shown below in Figure 12.3. It contains keys (Part,
Supplier) from both sides of the relationship to maintain the many-to-many relationship
in both directions. In the example in Figure 12.4, Parts over Suppliers, the association
table is hidden in the result because no column from this table is requested for display.

The example in Figure 12.5, Suppliers over Parts, does reference the association table to
include the QNT column. This value is known as intersecting data, data that is
meaningful at the point of intersection (i.e. the quantity of a given part from a given
supplier) also explained in Chapter 7, Section 7.4. This intersecting data value (Qnt) from
the association table would appear to be a value associated with the Parts table. Actually
values in the association table will always appear to be a value from the lower level table.

 PartSupplier Association Table

 Part Supplier Qnt
 P1 S1 100
 P1 S2 200
 P2 S1 150
 P2 S2 300
 P3 S2 350

 Figure 12.3 Association table used in many-to-many relationship

Advanced ANSI SQL Data Modeling and Structure Processing, Page 12-4

Chapter 12, Nested Relational Processing Prototype

SELECT PartNo, Desc, SuppNo, Addr FROM Parts LEFT PartSupplier
 ON PartNo=Part LEFT Suppliers ON Supplier=SuppNo

 TABLE NAME LEVEL PARENT ACCESS
 1 Parts 1 0 Yes
 2 PartSupplier 2 1 Yes
 3 Suppliers 3 2 Yes

 PARTNO DESC SUPPNO ADDR
 P1 Part1 S1 Wash
 S2 Denv
 P2 Part2 S1 Wash
 S2 Denv
 P3 Part3 S1 Wash

Figure 12.4 Part-supplier view processed by nested relational prototype

SELECT SuppNo, Addr, PartSupplier.Qnt, PartNo, Desc FROM Suppliers LEFT

 PartSuppliers ON SuppNo=Supplier LEFT Parts ON PartNo=Part

 TABLE NAME LEVEL PARENT ACCESS
 1 Suppliers 1 0 Yes
 2 PartSupplier 2 1 Yes
 3 Parts 3 2 Yes

 SUPPNO ADDR QNT PARTNO DESC
 S1 Wash 100 P1 Part1
 150 P2 Part2
 350 P3 Part3
 S2 Denv 200 P1 Part1

Suppliers

PartSupplier

PartSupplier

Suppliers

Parts

Parts

 300 P2 Part2

Figure 12.5 Supplier-part view processed by nested relational prototype

Advanced ANSI SQL Data Modeling and Structure Processing, Page 12-5

Chapter 12, Nested Relational Processing Prototype

12.4 Embedded Views

The following example in Figure 12.6 demonstrates that stored views containing Outer
join defined data structures can be seamlessly combined to form larger data structures
using the same standard ANSI-92 SQL Outer join syntax already demonstrated. The
nested relational prototype identifies stored queries by their view name. They are printed
out when expanded as shown below in Figure 12.6. The example in Figure 12.6 uses two
views shown earlier in this chapter, the Supplier view (Suppliers over Parts) and the
Department view (Department Over Employee over Dependent). In this case, the
Supplier view is joined over the Department view using the DeptSuppNo column in the
Department table. Notice that this combined data structure properly reflects its new
structure, the replication counts are accurate and the data displayed is consistent with the
previously shown data structures in this chapter.

SELECT SuppNo, PartNo, DeptName, EmpName, DpndName
 FROM SupplierView LEFT DepartmentView ON SuppNo=DeptSuppNo

Inserted SupplierView: Suppliers LEFT PartSupplier ON SuppNo=Supplier LEFT Parts

 ON PartNo=Part
Inserted DepartmentView: Department LEFT Employee ON DeptNo=EmpDeptNo

 LEFT Dependent ON EmpNo=DpndEmpNo

 TABLE NAME LEVEL PARENT ACCESS
 1 Suppliers 1 0 Yes
 2 PartSupplier 2 1 Yes
 3 Department 2 1 Yes
 4 Parts 3 2 Yes
 5 Employee 3 3 Yes
 6 Dependent 4 5 Yes

 SUPPNO PARTNO DEPTNAME EMPNAME DPNDNAME

PartSupplier Department

Parts Employee

Dependent

Suppliers

 S1 P1 ACCT Mike -
 - John -
 P2 HR Mary Jay
 Ken
 - Mark Kay
 P3 - - -
 S2 P1 MIS - -
 P2 - - -

Figure 12.6 Expanded view example

Advanced ANSI SQL Data Modeling and Structure Processing, Page 12-6

Chapter 12, Nested Relational Processing Prototype

12.5 View Optimization

The final example in Figure 12.7 demonstrates a powerful and very useful optimization
for stored views described in detail in Chapter 11, Section 11.3. It significantly enhances
the operation and usefulness of SQL’s new Outer join data structure processing
capability. It often happens that a stored view is used where all the tables defined are not
necessary to access for the desired result. With standard Inner join views, it is always
necessary that all tables in the view be accessed. This not only results in more overhead,
but often incorrect results caused by accessing unneeded tables which in turn can cause
replicated data values and lost data. With Outer join views, this unnecessary data access
concern is not necessary and can be avoided.

SELECT SuppNo, PartNo, DeptName, EmpName, DpndName

 FROM SupplierView LEFT DepartmentView ON SuppNo=DeptSuppNo

Inserted SupplierView: Suppliers LEFT PartSupplier ON SuppNo=Supplier LEFT Parts

 ON PartNo=Part
Inserted DepartmentView: Department LEFT Employee ON DeptNo=EmpDeptNo

 LEFT Dependent ON EmpNo=DpndEmpNo

 TABLE NAME LEVEL PARENT ACCESS
 1 Suppliers 1 0 Yes
 2 PartSupplier 2 1 Yes
 3 Department 2 1 Yes
 4 Parts 3 2 Yes
 5 Employee 3 3 Yes
 6 Dependent 4 5 No

 SUPPNO PARTNO DEPTNAME EMPNAME
 S1 P1 ACCT Mike
 - John
 P2 HR Mary
 - - Mark
 P3 - -
 S2 P1 MIS -
 P2 - -

PartSupplier Department

Parts Employee

Suppliers

 Figure 12.7 View optimization example

Advanced ANSI SQL Data Modeling and Structure Processing, Page 12-7

Chapter 12, Nested Relational Processing Prototype

The example above in Figure 12.7 is identical to the previous example in Figure 12.6
except in this example no data is selected from the Dependent table. In this case, the DSE
prototype determines from the semantics of the data structure that the Dependent table
does not need to be accessed (see the ACCESS column in the data structure table above).
Notice that the result of the SQL query statement in the example above, without the
Dependent data and access to the Dependent table, remains consistent with the previous
example. This proves this optimization works in this situation.

Conclusion

The live examples presented in this chapter show that the DSE nested relational prototype
proves a number of things. First, that the DSE software works, it does extract the data
structure meta information embedded in the Outer join. Second, it can be utilized to
develop products like the nested relational processor that would not be possible otherwise
with standard SQL. Third, and most importantly, it proves the data modeling technology
behind the DSE software is valid and does works. This means the Outer join does indeed
inherently support the data modeling of complex data structures. And fourth, it
demonstrates this technology is useful and viable.

Advanced ANSI SQL Data Modeling and Structure Processing, Page 12-8

