
Advanced Data Access Technologies, Inc.
www.adatinc.com (310)395-6889

Our SQL/XML Breakthrough Technology Solution

We are developing the only ANSI SQL processor that transparently and fully integrates native XML. This
breakthrough disruptive EII (federated real-time) technology has already been developed, prototyped, and
patented. Our SQL/XML integration technology solution has been published in academic journals and
industry publications demonstrating its validity and interest.

Relational and XML data are ubiquitous and require integrated processing. SQL vendors and standards
groups in this multibillion dollar market have failed to seamlessly perform this problematic integration,
resorting to nonstandard and complex solutions that still do not integrate XML fully or seamlessly. Their
solutions are also very inefficient, unstable, and require much training producing a huge opportunity for
the company that can solve this elusive solution and bring it to market as a product.

Our founder and CTO, one of the original members of the ANSI SQLX Group investigating this
integration problem, has solved the SQL/XML integration problem and developed the Holy Grail of SQL-
based native XML integration solutions. Remarkably, it is ANSI standard, transparent, and efficient while
fully integrating XML in SQL. It solves every outstanding problem while additionally supporting many
advanced XML hierarchical capabilities thought impossible with SQL as shown below.

 Comparison of SQL Native XML Integration Solutions

SQL Native XML Capabilities Our SQL XQuery Proprietary SQL/XML
 Solution In SQL SQL Standard
Relational Mathematically Sound
ANSI SQL Hierarchically Correct
Transparent Native XML Support
Small Code Footprint
Utilizes Semantics in Structure
Dynamic, Ad Hoc Capability
Hierarchical Data Modeling
Full Multi-leg Data Filtering
Variable Structures
Structural Transformation
Logical Network Structures
Hierarchical Processing
Hierarchical Optimization
Hierarchical Join Control
Fragment Processing
Efficient Memory and CPU
SQL Update Using XML Data
Native XML Input
Structured XML Output

ANSI SQL Solution: Nonprocedural and Seamless (no training or coding)
XML Centric Standard: Procedural (requires training and coding)
SQL Proprietary Solution: XML Centric (requires training, risky)
No Support for this feature

Legend:

Our Unique SQL/XML Solution Overview

SQL, the older technology, uses flat two dimensional tables, while XML, the newer technology,
uses hierarchical structures. There are two possibilities for integrating these two structure types in
SQL. The most obvious and commonly used is to flatten the XML hierarchical data into a flat
relational structure which removes any hierarchical semantic value in the data. The other
possibility, not thought possible in SQL, is to model and operate on the relational structures
hierarchically. This would allow the XML and relational data to be fully and transparently
integrated if SQL could model and operate on data hierarchical. This has been accomplished and
incorporated into our solution enabling our standard SQL to perform total seamless integration
even when processing XML’s advanced hierarchical operations.

What is truly unique about our hierarchical SQL solution for native XML integration is that no
SQL or XML capabilities have been sacrificed to achieve integration. The capabilities of both
these languages are naturally preserved and combined. What makes this even more impressive, is
that this feat is performed within the current ANSI SQL standard operating syntax and semantics.
This is possible because hierarchical processing is a subset of relational processing, and is backed
by ANSI SQL’s mathematically sound foundation. This gives our unique technology a significant
advantage over all proprietary and competing SQL/XML integration standard efforts. This is truly
the next generation SQL processor for the XML Internet generation.

A B
A C

C X
C Y

A C X
A C Y

A B
A C +

X Y

With our ANSI SQL hier
XML data are modeled a
producing a hierarchical
correctly preserved and th
used automatically. The A
be aware of the hierarchi

Y

C

A

+

XML Integration
 Our Way

 A

Relational and XML
data are like oil and
water when combined.

Structure
information
must be
explicitly
applied
procedurally

XML Integration
 Current Way

Copyright  2004 by Advanced Data
+

With the standard solution, XML
data is flattened. The data is
processed relationally, the result
represents a flat relational data
result. This can lose data and
hierarchical semantics.
archical solution, the relational an
nd naturally processed hierarchica
data result. The hierarchical data i
e associated structure semantics
NSI SQL programmer does not n

cal processing occurring automati

Y X

X

 Access Technologies, Inc.
C

Y
C

X

C

B
 B
A

C

d
lly
s
are
eed

call

 to

y.

2

Benefits of Transparent Native XML Support in SQL

Besides the advantages that no XML coding, debugging or training is necessary either for XML in general
or for the XML feature interface, it also means that that all of SQL’s capabilities automatically and
naturally operate on XML. XML data does not have to be handled separately by special XML centric
functions. SQL’s full and complete data processing capabilities are available to the XML data.
Additionally, with our solution, standard SQL is operating hierarchically so that XML’s transparent
integration remains at a hierarchical processing level across all of SQL’s capabilities.

Unique Advanced Capabilities of Our Technology

• ANSI SQL standard, no XML centric syntax needed, no risk
• Seamless and transparent native XML access and integration, no training
• Automatically utilizes hierarchical semantics in native XML data, increasing the value of data
• Automatically produces hierarchical result as rowset or fully structured XML
• Supports full hierarchical and dynamic joining of hierarchical structures
• Supports advanced hierarchical processing capabilities introduced by XML
• Eliminates common SQL/XML integration CPU and memory bottlenecks
• All SQL features can operate on native XML dynamically and with no limitations imposed
• Result is both valid hierarchically and relationally insuring the most complete integration possible
• Since the hierarchical result is relationally accurate, it is also mathematically sound
• Hierarchical data modeling in SQL views, makes SQL easier and more accurate to use
• All hierarchical views naturally expand into a single unified and heterogeneous ANSI SQL view
• All heterogeneous data sources take part consistently in all hierarchical processing operations

 Our Significant Research Findings

• Hierarchical processing is a valid subset of relational processing
• Complete and flexible hierarchical data modeling in SQL is possible
• Hierarchical processing optimizations also apply to relational processing
• Variable XML hierarchical structures and their processing in SQL are possible
• Hierarchical logical and physical data structure transformation is possible in SQL
• Linking below the root of the lower joined structure is possible and very useful
• The relational engine can be transparently replaced with an efficient hierarchical engine

Our SQL Native XML Integration Solution is ANSI Standard

Our solution is not another proprietary solution where we decided how it will operate and what new XML
centric syntax will be added. Nor is it another standardization attempt where external and post processing
operations with their procedural XML centric syntax are classified as new SQL standards. These methods
do not work well because they can not seamlessly integrate relational and XML data. Our solution does
not require adding SQL syntax or defining how to perform the integration— our solution utilizes SQL’s
inherent hierarchical processing to seamlessly and completely integrate relational and XML data
naturally. This is performed inherently using ANSI SQL’s inherent hierarchical operation. Our seamless
and complete solution remains ANSI SQL standard while achieving transparent XML integration.

Copyright  2004 by Advanced Data Access Technologies, Inc. 3

Our ANSI SQL Native XML Integration Example

Using stored structured view:

SELECT CustName, CustID, ItemName, ItemPrice
FROM CustomerView
WHERE ItemType=”Clothing”
FOR XML Element, ROOT=”Container”

With inline data modeling: This query example uses

dynamic, ad hoc inline
data modeling to define
Customer over Invoice
over Item. Views can be
used with inline data
modeling.

SELECT CustName, CustID, ItemName, ItemPrice
FROM Customer
 LEFT JOIN Invoice ON Customer.CustID=Invoice.CustID
 LEFT JOIN Item ON Invoice.InvNo=Item.InvNo
WHERE ItemType=”Clothing”
FOR XML Element, ROOT=”Container”

The above two SQL queries automatically produces the following XML:

 <Container>
 <Customer>
 <CustName> Mike </CustName>

 <CustID> 1056 </CustID>
 <Item>
 <ItemName> Pants </ItemName>
 <ItemPrice> $4.98 </ItemPrice>
 </Item>
 <Item>
 <ItemName> Pants </ItemName>
 <ItemPrice> $5.98 </ItemPrice>
 </Item>
 </Customer>
 <Customer>
 <CustName> Mary </CustName>
 <CustID> 4059 </CustID>
 <Item>
 <ItemName> Shirt </ItemName>
 <ItemPrice> $9.98 </ItemPrice>
 </Item>
 </Customer>
 </Container>

Copyright  2004 by Advanced Data Access Techn
Simply adding or
removing a data item
from the above SQL
Select list will
automatically tailor
this XML output.
XML processing and
output is driven
transparently by the
predefined SQL
hierarchical view which
defines Customer over
Invoice over Item.
ologies, Inc. 4

XQuery and SQL/XML Standard Queries
Produce the Same XML But With a Lot More Work

XQuery Example: Even though the XQuery W3C

design group says that XQuery is
nonprocedural and declarative, it is
fairly obvious with it’s embedded
FOR loops that it is very procedural
requiring programming to perform
hierarchically.

They also say it is SQL-like and the
Select list is simply part of the
XQuery FLOWR (For, Let, Order,
Where, Return) statement shown.
Select list items are spread out all
over the query.

For these two reasons, ad hoc
processing is not possible, simply
adding another Select list item
requires programming.

<Container>
{
 FOR $inv IN document(“invoice.xml”)//invoice
 WHERE $inv//item/itemtype=”Clothing”
 RETURN
 <Customer>
 <CustName>($inv/customer/CustName)</CustName>
 <CustID>($inv/customer/@CustID)</CustID)
 {
 FOR $cust IN $inv/customer/name
 RETURN
 <Item>
 <ItemName>($inv/item/@name)</ItemName>
 <ItemPrice> ($inv/item/@price)</ItemPrice>
 </Item>
 }
 </Customer>
 }
</Container>

The SQL/XML Standard does not
offer hierarchical processing, just
XML centric output of XML
producing less accuracy.

This XML output is done by
using XML centric functions in
the SQL SELECT list.

To create the hierarchical
structure, these functions require
nesting, a form of procedural
programming.

This SQL/XML method, like
XQuery, also does not support ad
hoc processing or the simple
addition of a SELECT list item.

SQL/XML Standard Example:

SELECT
 XMLELEMENT (NAME “Container”,
 XMLELEMENT NAME “Customer”,
 XMLELEMENT(NAME “CustName”, CustName,),
 XMLELEMENT(NAME “CustID”, CustID),
 XMLELEMENT(NAME, ”Item,
 XMLELEMENT(NAME “ItemName”, ItemName),
 XMLELEMENT(NAME “ItemPrice”, ItemPrice),
))) AS “result”
FROM Customer
 LEFT JOIN Invoice ON Customer.CustID=Invoice.CustID
 LEFT JOIN Item ON Invoice.InvNo=Item.InvNo
WHERE ItemType=”Clothing”

Copyright  2004 by Advanced Data Access Technologies, Inc. 5

 Our ANSI SQL Native XML Integration Annotated Example

 XMLView RDBView
 Physical SQL View Logical SQL View

 X L R D
X1 L1 R1 D1
X1 L1 R1 D2
X1 L2 R1 D1
X1 L2 R1 D2
X2 R2 D3

X1 L1 D2
X1 L2 D2
X2 D3

X
X

X

M L

R

D B

CREATE VIEW
XMLView AS
SELECT *
FROM X
LEFT JOIN M
ON Xnode=Mnode
LEFT JOIN L
ON Xnode=Lnode

SELECT Xval, Lval, Dval FROM XMLView
 LEFT JOIN RDBView ON Xkey=Rkey
 WHERE Dval <> “D1”, FOR XML ELEMENT

Q

H

SQL Views
can Store

Hierarchically
Modeled

Structures for
Reuse and
Abstraction

Relational Working Set

Relational Result

Hierarchical Working Data

Views Support Logical, Physical
and Heterogeneous Structures

Abs e

XMLView
Sub Structure

RDBView
Sub Structure

Structured SQL Views
Can also be
Automatically
Generated from
Existing Hierarchical
Data Definitions

Invoking SQL
can Dynamically
Join Hierarchical
Data Structures

Input Structures
are Hierarchical

Copyr
SELECT Xval, Lval, Dval FROM
 X LEFT JOIN M ON Xnode=Mnode
 LEFT JOIN L ON Xnode=Lnode
LEFT JOIN
 R LEFT JOIN D ON Rkey=Dkey
 LEFT JOIN B ON Rkey=Bkey
ON Xkey=Rkey WHERE Dval <> ”D1”,
FOR XML Mixed Content

1 L1
1 L2

X

L

Stru

Relational
 or

Hierarchica
(Automatically utilize

information pres

XML
Retri

ight  2004 by Advan

CREATE VIEW
RDBView AS
SELECT *
FROM R
LEFT JOIN D
ON Rkey=Dkey
LEFT JOIN B
ON Rkey=Bkey

D

Engine

l Engine
s data structure
ent in SQL)

Data
eval

X1

L1

L2

ced Data Access Tech
 Unified SQL View
Expanded SQL
uery Seamlessly

and Automatically
Models a Unified
ierarchical Virtual

Structure View

X1

L1 R1

D1
L2

D2

X2

D3

R2
 Result
cture
<X> X

<X> X

X

nologie
 Invoking SQL
tracted Structur
1 <L
 <L
 <D

2 <D

s, Inc
X

M
 L
> L1
> L2 <
> D2
> D3

.
R

D

</L>
/L>

</D
</D
B

ML Structured Result

> </X>
> </X>

6

	Advanced Data Access Technologies, Inc.
	Comparison of SQL Native XML Integration Solutions
	Our Unique SQL/XML Solution Overview
	Benefits of Transparent Native XML Support in SQL
	Our Significant Research Findings
	Our SQL Native XML Integration Solution is ANSI Standard
	Using stored structured view:
	With inline data modeling:
	
	XQuery and SQL/XML Standard Queries
	Produce the Same XML But With a Lot More Work

	XMLView RDBView

